Abstract

We have experimentally measured the Raman gain efficiency (RGE) and chromatic dispersion (CD) of a hole-assisted fiber (HAF). The RGE of a HAF was characterized using standard pump on/off technique while the CD of the fiber was measured using optical network analyzer. Theoretical simulations of the modal characteristics and the RGE of HAF were carried out using an accurate full-vectorial finite element method. Further, the bending effects on the CD and the RGE of a HAF with a smallest feasible bending radius are demonstrated. It was found that the CD increases while the RGE is decreased by bending HAF in a smallest bending radius of 5 mm. Numerical predictions from the theory are shown to be in good agreement with the experimental results.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers

Kunimasa Saitoh, Shailendra K. Varshney, and Masanori Koshiba
Opt. Express 15(26) 17724-17735 (2007)

Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band

Kazuya Sasaki, Shailendra K. Varshney, Keisuke Wada, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 15(5) 2654-2668 (2007)

Bending-insensitive single-mode hole-assisted fibers with reduced splice loss

Kunimasa Saitoh, Yukihiro Tsuchida, and Masanori Koshiba
Opt. Lett. 30(14) 1779-1781 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T.A. Birks, J.C. Knight, and P.St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22,961ndash;963 (1997).
    [Crossref] [PubMed]
  2. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single mode holey fibers with low bending losses,” Opt. Express 13,4770ndash;4779 (2005).
    [Crossref] [PubMed]
  3. M. Fuochi, F. Poli, A. Cucinotta, and L. Vincetti, “Study of Raman amplification properties in triangular photonic crystal fibers,” J. Lightwave Technol. 21,2247ndash;2254 (2003).
    [Crossref]
  4. Z. Yusoff, J.H. Lee, W. Belardi, T.M. Monro, P.C. Teh, and D.J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27,424ndash;426 (2002).
    [Crossref]
  5. C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
    [Crossref]
  6. S.K. Varshney, K. Saitoh, and M. Koshiba, “A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17,2062ndash;2065 (2005).
    [Crossref]
  7. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band,” Opt. Express 13,9516ndash;9526 (2005).
    [Crossref] [PubMed]
  8. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band,” Opt. Express 14,3528ndash;3540 (2006).
    [Crossref] [PubMed]
  9. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.
  10. K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
    [PubMed]
  11. A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.
  12. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38,927ndash;933 (2002).
    [Crossref]
  13. The standard single mode fiber (SMF) was fabricated by Sumitomo Electrical Co. Ltd.(www.sei.co.jp).
  14. T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).
  15. C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).
  16. J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
    [Crossref]

2006 (3)

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band,” Opt. Express 14,3528ndash;3540 (2006).
[Crossref] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.

A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.

2005 (3)

2003 (2)

M. Fuochi, F. Poli, A. Cucinotta, and L. Vincetti, “Study of Raman amplification properties in triangular photonic crystal fibers,” J. Lightwave Technol. 21,2247ndash;2254 (2003).
[Crossref]

C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
[Crossref]

2002 (4)

Z. Yusoff, J.H. Lee, W. Belardi, T.M. Monro, P.C. Teh, and D.J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27,424ndash;426 (2002).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38,927ndash;933 (2002).
[Crossref]

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
[Crossref]

1997 (1)

Agarwal, G. P.

C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).

Belardi, W.

Birks, T.A.

Bromage, J.

J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
[Crossref]

Cucinotta, A.

de Matos, C.J.S.

C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
[Crossref]

Fujisawa, T.

Fuochi, M.

Hansen, K.P.

C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
[Crossref]

Headly, C.

C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).

Kakui, M.

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

Knight, J.C.

Koshiba, M.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band,” Opt. Express 14,3528ndash;3540 (2006).
[Crossref] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band,” Opt. Express 13,9516ndash;9526 (2005).
[Crossref] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, “A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17,2062ndash;2065 (2005).
[Crossref]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single mode holey fibers with low bending losses,” Opt. Express 13,4770ndash;4779 (2005).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38,927ndash;933 (2002).
[Crossref]

K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
[PubMed]

Landais, D.

A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.

Lee, J.H.

LeGoffic, O.

A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.

Lines, M.E.

J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
[Crossref]

Miyamoto, T.

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

Monro, T.M.

Monteville, A.

A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.

Nakai, K.

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

Poli, F.

Richardson, D.J.

Rottwitt, K.

J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
[Crossref]

Russell, P.St.J.

Saitoh, K.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band,” Opt. Express 14,3528ndash;3540 (2006).
[Crossref] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band,” Opt. Express 13,9516ndash;9526 (2005).
[Crossref] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, “A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17,2062ndash;2065 (2005).
[Crossref]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single mode holey fibers with low bending losses,” Opt. Express 13,4770ndash;4779 (2005).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38,927ndash;933 (2002).
[Crossref]

K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
[PubMed]

Sasaki, K.

K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
[PubMed]

Taylor, J.R.

C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
[Crossref]

Teh, P.C.

Tsuchida, Y.

Tsuzaki, T.

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

Varshney, S.K.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band,” Opt. Express 14,3528ndash;3540 (2006).
[Crossref] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band,” Opt. Express 13,9516ndash;9526 (2005).
[Crossref] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, “A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17,2062ndash;2065 (2005).
[Crossref]

K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
[PubMed]

Vincetti, L.

Wada, K.

K. Sasaki, S.K. Varshney, K. Wada, K. Saitoh, and M. Koshiba, “Optimization of pump spectra for gainflattened photonic crystal fiber Raman amplifiers operating in C-band,” Opt. Express (Communicated).
[PubMed]

Yusoff, Z.

Electron. Lett. (1)

C.J.S. de Matos, K.P. Hansen, and J.R. Taylor, “Experimental characterization of Raman gain efficiency of holey fiber,” Electron. Lett. 39,424ndash;425 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38,927ndash;933 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S.K. Varshney, K. Saitoh, and M. Koshiba, “A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17,2062ndash;2065 (2005).
[Crossref]

J. Bromage, K. Rottwitt, and M.E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14,24ndash;26 (2002).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (2)

SEI Technical Review (1)

T. Miyamoto, T. Tsuzaki, M. Kakui, and K. Nakai, “Investigation of accurate measurement of Raman gain coefficient,” SEI Technical Review,39ndash;44 (2002).

Other (4)

C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).

The standard single mode fiber (SMF) was fabricated by Sumitomo Electrical Co. Ltd.(www.sei.co.jp).

A. Monteville, D. Landais, and O. LeGoffic et al., “Low loss, low OH, highly nonlinear holey fiber for Raman amplification,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper no. CMC1.

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper no. OWD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1. (a) Transverse cross-section and (b) SEM image of the fabricated HAF.
Fig. 2.
Fig. 2. Experimental setup for measuring on/off Raman gain in HAF.
Fig. 3.
Fig. 3. The modal field distribution (Ex -component) of a fundamental mode at 1550 nm for a HAF (a) without bending and (b) with a 5 mm bending radius.
Fig. 4.
Fig. 4. (a) Trace of an input pump with peak power and wavelength of 22.4 dBm and 1450.7 nm, (b) recorded Raman net gain for a standard SMF from Sumitomo, and (c) the measured attenuation spectrum for a HAF using white (solid blue curve) and ASE (solid red curve) light source.
Fig. 5.
Fig. 5. The spectral variation of RGE for a HAF with and without bending. The solid black curve corresponds to experimentally measured RGE.
Fig. 6.
Fig. 6. The CD of a HAF with and without bending. The black dots resemble to the experiment, while solid lines stand for numerical computation.

Tables (1)

Tables Icon

Table 1. The experimentally characterized and numerically computed RGE and CD of a HAF.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ R = G 4.343 × L eff × P p
L eff = 1 exp ( α p L ) α p
γ R = S C SiSi ( Δv ) ( 1 2 m ( x , y ) ) i s ( x , y ) i p ( x , y ) dxdy
+ S C GeSi ( Δv ) 2 m ( x , y ) i s ( x , y ) i p ( x , y ) dxdy

Metrics