C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron. 14, 599–609 (2008).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).

[Crossref]
[PubMed]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

D. Yevick and T. Lu, “Improved multicanonical algorithms,” J. Opt. Soc.Am. A 23, 2912–2918 (2006).

[Crossref]

I. Nasieva, A. Kaliazin, and S.K. Turitsyn, “Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration,” Opt. Commun. 262, 246–249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.

[Crossref]

B. Charbonnier, N. El Dahdah, and M. Joindot, “OSNR margin brought about by nonlinear regenerators in optical communication links,” IEEE Photon. Technol. Lett. 18, 475–477 (2006).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

A. O. Lima, I. T. Lima, and C. R. Menyuk, “Error estimation in Multicanonical Monte Carlo simulations with applications to polarization-mode-dispersion emulators,” J. Lightwave Technol. 23, 3781–3789 (2005).

[Crossref]

T. Lu and D. Yevick, “Efficient multicanonical algorithms,” IEEE Photon. Technol. Lett. 17, 861–863 (2005).

[Crossref]

T. Lu and D. Yevick, “Biased multicanonical sampling,” IEEE Photon. Technol. Lett. 17, 1420–1422 (2005).

[Crossref]

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).

[Crossref]
[PubMed]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16, 200–202 (2004).

[Crossref]

D. Yevick, “Multicanonical communication system modeling — Application to PMD statistics,” IEEE Photon. Technol. Lett. 14, 1512–1514 (2002).

[Crossref]

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

B. A. Berg, “Algorithmic aspects of multicanonical simulations,” Nucl. Phys. B (Proc. Suppl.)63A-C, 982–984 (1998); also at http://www.arxiv.org, paper hep-lat/9708003.

[Crossref]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

B. Charbonnier, N. El Dahdah, and M. Joindot, “OSNR margin brought about by nonlinear regenerators in optical communication links,” IEEE Photon. Technol. Lett. 18, 475–477 (2006).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

B. Charbonnier, N. El Dahdah, and M. Joindot, “OSNR margin brought about by nonlinear regenerators in optical communication links,” IEEE Photon. Technol. Lett. 18, 475–477 (2006).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16, 200–202 (2004).

[Crossref]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16, 200–202 (2004).

[Crossref]

B. Charbonnier, N. El Dahdah, and M. Joindot, “OSNR margin brought about by nonlinear regenerators in optical communication links,” IEEE Photon. Technol. Lett. 18, 475–477 (2006).

[Crossref]

I. Nasieva, A. Kaliazin, and S.K. Turitsyn, “Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration,” Opt. Commun. 262, 246–249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron. 14, 599–609 (2008).

[Crossref]

T. I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).

[Crossref]
[PubMed]

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).

[Crossref]
[PubMed]

T. I. Lakoba, “BER degradation by a signal-reshaping processor with non-instantaneous response,” J. Lightwave Technol. (submitted).

M. Vasilyev, P. G. Patki, and T. I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

M. Vasilyev, T. I. Lakoba, and P. Patki, “Multiwavelength all-optical regeneration,” in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.

D. Yevick and T. Lu, “Improved multicanonical algorithms,” J. Opt. Soc.Am. A 23, 2912–2918 (2006).

[Crossref]

T. Lu and D. Yevick, “Efficient multicanonical algorithms,” IEEE Photon. Technol. Lett. 17, 861–863 (2005).

[Crossref]

T. Lu and D. Yevick, “Biased multicanonical sampling,” IEEE Photon. Technol. Lett. 17, 1420–1422 (2005).

[Crossref]

P. V. Mamyshev, “All-optical regeneration based on self-phase modulation effect,” in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475–476.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

I. Nasieva, A. Kaliazin, and S.K. Turitsyn, “Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration,” Opt. Commun. 262, 246–249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

M. Vasilyev, T. I. Lakoba, and P. Patki, “Multiwavelength all-optical regeneration,” in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

M. Vasilyev, P. G. Patki, and T. I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16, 200–202 (2004).

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

I. Nasieva, A. Kaliazin, and S.K. Turitsyn, “Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration,” Opt. Commun. 262, 246–249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.

[Crossref]

T. I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).

[Crossref]
[PubMed]

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).

[Crossref]
[PubMed]

M. Vasilyev, P. G. Patki, and T. I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

M. Vasilyev, T. I. Lakoba, and P. Patki, “Multiwavelength all-optical regeneration,” in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.

D. Yevick and T. Lu, “Improved multicanonical algorithms,” J. Opt. Soc.Am. A 23, 2912–2918 (2006).

[Crossref]

T. Lu and D. Yevick, “Biased multicanonical sampling,” IEEE Photon. Technol. Lett. 17, 1420–1422 (2005).

[Crossref]

T. Lu and D. Yevick, “Efficient multicanonical algorithms,” IEEE Photon. Technol. Lett. 17, 861–863 (2005).

[Crossref]

D. Yevick, “Multicanonical communication system modeling — Application to PMD statistics,” IEEE Photon. Technol. Lett. 14, 1512–1514 (2002).

[Crossref]

F. Ö hman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245–255 (2004).

[Crossref]

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron. 14, 599–609 (2008).

[Crossref]

D. Yevick, “Multicanonical communication system modeling — Application to PMD statistics,” IEEE Photon. Technol. Lett. 14, 1512–1514 (2002).

[Crossref]

B. Charbonnier, N. El Dahdah, and M. Joindot, “OSNR margin brought about by nonlinear regenerators in optical communication links,” IEEE Photon. Technol. Lett. 18, 475–477 (2006).

[Crossref]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett. 17, 908–910 (2005).

[Crossref]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16, 200–202 (2004).

[Crossref]

T. Lu and D. Yevick, “Efficient multicanonical algorithms,” IEEE Photon. Technol. Lett. 17, 861–863 (2005).

[Crossref]

T. Lu and D. Yevick, “Biased multicanonical sampling,” IEEE Photon. Technol. Lett. 17, 1420–1422 (2005).

[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20, 1169–1171 (2008).

[Crossref]

D. Yevick and T. Lu, “Improved multicanonical algorithms,” J. Opt. Soc.Am. A 23, 2912–2918 (2006).

[Crossref]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281, 2252–2264 (2008).

[Crossref]

I. Nasieva, A. Kaliazin, and S.K. Turitsyn, “Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration,” Opt. Commun. 262, 246–249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.

[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).

[Crossref]
[PubMed]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).

[Crossref]
[PubMed]

T. I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).

[Crossref]
[PubMed]

P. V. Mamyshev, “All-optical regeneration based on self-phase modulation effect,” in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475–476.

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “Recirculating-loop study of dispersion-managed 2R regeneration,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

M. Vasilyev, T. I. Lakoba, and P. Patki, “Multiwavelength all-optical regeneration,” in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.

M. Vasilyev, P. G. Patki, and T. I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).

B. A. Berg, “Algorithmic aspects of multicanonical simulations,” Nucl. Phys. B (Proc. Suppl.)63A-C, 982–984 (1998); also at http://www.arxiv.org, paper hep-lat/9708003.

[Crossref]

T. I. Lakoba, “BER degradation by a signal-reshaping processor with non-instantaneous response,” J. Lightwave Technol. (submitted).