Abstract

Intermodal four-wave mixing (FWM) in microstructured optical fibers (MOF) is studied theoretically and experimentally. The dependance of FWM frequency detuning on the geometrical parameters of the fiber, namely the pitch, the core width and the air-filling fraction is derived. We propose to use the results of this investigation to control the position of the Stokes and anti-Stokes waves directly from the fiber transverse structure drawing without the need for time-consuming simulations as in usual design procedures. Stokes sideband can then be freely tuned within the S-, L-, and C- bands with great potential for infrared applications.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy

Pierre Blandin, Frederic Druon, Marc Hanna, Sandrine Lévêque-Fort, Christelle Lesvigne, Vincent Couderc, Philippe Leproux, Alessandro Tonello, and Patrick Georges
Opt. Express 16(23) 18844-18849 (2008)

Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges
Opt. Lett. 32(15) 2173-2175 (2007)

Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing

Michael H. Frosz, Alessio Stefani, and Ole Bang
Opt. Express 19(11) 10471-10484 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum. Electron. 16, 694–697 (1980).
    [Crossref]
  2. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
    [Crossref] [PubMed]
  3. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
    [Crossref]
  4. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
    [Crossref]
  5. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, “Polarization mode dispersion and vectorial modulational instability in airsilica microstructure fiber,” Opt. Lett. 27, 695–697 (2002).
    [Crossref]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–763 (2002).
    [Crossref]
  7. K. K. Chow, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber,” Opt. Express 15, 15418–15423 (2007).
    [Crossref] [PubMed]
  8. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, “Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” Opt. Lett. 29, 983–985 (2004).
    [Crossref] [PubMed]
  9. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
    [Crossref] [PubMed]
  10. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
    [Crossref] [PubMed]
  11. G. K. Wong, A. Y. Chen, S. Ha, R. Kruhlak, S. Murdoch, R. Leonhardt, J. Harvey, and N. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).
    [Crossref] [PubMed]
  12. N. G. R. Broderick, R. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [Crossref]
  13. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulational instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
    [Crossref] [PubMed]
  14. P. D. Rasmussen, J. Laegsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Nonlinear fiber optics2nd Ed. (Academic, Boston, Mass. 1995).
  16. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
    [Crossref]
  17. N. I. Nikolov, T. Srensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
    [Crossref]
  18. M. H. Frosz, T. Srensen, and O. Bang, “Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 223, 1692–1699 (2006).
    [Crossref]

2008 (1)

2007 (2)

2006 (1)

M. H. Frosz, T. Srensen, and O. Bang, “Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 223, 1692–1699 (2006).
[Crossref]

2005 (2)

2004 (1)

2003 (2)

2002 (3)

2001 (1)

1999 (1)

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
[Crossref] [PubMed]

1980 (1)

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum. Electron. 16, 694–697 (1980).
[Crossref]

1975 (1)

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics2nd Ed. (Academic, Boston, Mass. 1995).

Bang, O.

Barthélémy, A.

Bennett, P. J.

Bjarklev, A.

Blandin, P.

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum. Electron. 16, 694–697 (1980).
[Crossref]

Broderick, N. G. R.

Chau, A. H. L.

Chen, A. Y.

Chow, K. K.

Coen, S.

Coker, A.

Couderc, V.

de Matos, C. J. S.

Druon, F.

Dudley, J. M.

Fiorentino, M.

Frosz, M. H.

M. H. Frosz, T. Srensen, and O. Bang, “Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 223, 1692–1699 (2006).
[Crossref]

Georges, P.

Ha, S.

Hanna, M.

Hansen, K. P.

Harvey, J.

Harvey, J. D.

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
[Crossref] [PubMed]

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum. Electron. 16, 694–697 (1980).
[Crossref]

Hasegawa, T.

Joly, N.

Kikuchi, K.

Knight, J. C.

Kruhlak, R.

Kumar, P.

Lacroix, S.

Laegsgaard, J.

Leonhardt, R.

Leproux, P.

Lesvigne, C.

McKinstrie, C. J.

Millot, G.

Monro, R. M.

Murdoch, S.

Nagashima, T.

Nikolov, N. I.

Ohara, S.

Provino, L.

Radic, S.

Rasmussen, P. D.

Raymer, M. G.

Richardson, D. J.

Russell, P. St. J.

Sauter, A.

Sharping, J. E.

Srensen, T.

M. H. Frosz, T. Srensen, and O. Bang, “Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 223, 1692–1699 (2006).
[Crossref]

N. I. Nikolov, T. Srensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
[Crossref]

Stolen, R. H.

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

Sugimoto, N.

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
[Crossref] [PubMed]

Taylor, J. R.

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
[Crossref] [PubMed]

Tonello, A.

Wadsworth, W. J.

Windeler, R. S.

Wong, G. K.

Wong, G. K. L.

IEEE J. Quantum Electron. (1)

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

IEEE J. Quantum. Electron. (1)

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum. Electron. 16, 694–697 (1980).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Express (4)

Opt. Lett. (7)

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, “Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” Opt. Lett. 29, 983–985 (2004).
[Crossref] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
[Crossref]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
[Crossref]

G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, “Polarization mode dispersion and vectorial modulational instability in airsilica microstructure fiber,” Opt. Lett. 27, 695–697 (2002).
[Crossref]

N. G. R. Broderick, R. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulational instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–139 (1986).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear fiber optics2nd Ed. (Academic, Boston, Mass. 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Scanning electron microscope (SEM) image of a polarization-maintaining MOF. (b) Detail of the cross section.
Fig. 2.
Fig. 2. (a) Theoretical dispersion curves of LP01 and LP01 modes polarized along the x-axis for the fiber sample F13 and (b) the corresponding phase matching diagram.
Fig. 3.
Fig. 3. FWM spectra obtained for 80 cm-long fiber samples of (a) F13, (b) F6, (c) F12, (d) F3, (e) F9 and (f) F6.
Fig. 4.
Fig. 4. Evolution of the FWM frequency detuning as a function of the fiber parameters : (a) core width Γ, (b) pitch Λ, (c) air-filling fraction d/Λ.

Tables (1)

Tables Icon

Table 1. MOFs geometrical parameters and FWM frequency detunings.

Metrics