Abstract

We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N2O gas in that frequency range.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed broadband frequency sweep of continuous-wave terahertz radiation

Dae-Su Yee, Ji Sang Yahng, Choon-Su Park, Hwi Don Lee, and Chang-Seok Kim
Opt. Express 23(11) 14806-14814 (2015)

Chirped-pulse terahertz spectroscopy for broadband trace gas sensing

Eyal Gerecht, Kevin O. Douglass, and David F. Plusquellic
Opt. Express 19(9) 8973-8984 (2011)

High-speed frequency-domain terahertz coherence tomography

Ji Sang Yahng, Choon-Su Park, Hwi Don Lee, Chang-Seok Kim, and Dae-Su Yee
Opt. Express 24(2) 1053-1061 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
    [Crossref]
  2. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
    [Crossref]
  3. N. Shimizu, H.J. Song, Y. Kado, T. Furuta, A. Wakatsuki, and Y. Muramoto, “Gas detection using terahertz waves,” NTT Technical Review 7, 3 37–40 (2009).
  4. N. Shimizu, H.-J. Song, T. Furuta, R. Fukazawa, K. Suizu, T. Nagatsuma, and Y. Kado, “Active gas sensing with sub-terahertz waves reflected from a wall,” Conference Digest of IRMMW-THz, R5D7 1293 (2008).
  5. K.-H. Oh, H.-J. Song, N. Shimizu, S. Kohjiro, T. Furuta, A. Wakatsuki, K. Kikuchi, K. Suizu, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Active gas sensing with a highly- sensitive sub-terahertz receiver utilizing a superconductor-insulator-superconductor mixer and a photonics-based local oscillator,”Proc. SPIE 7215, 72150D 1–11 (2009).
  6. A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port,” Conference Digest of IRMMW-THz, M4K2 1199 (2008).
  7. S. Kohjiro, K. Kikuchi, M. Maezawa, T. Furuta, A. Wakatsuki, H. Ito, N. Shimizu, T. Nagatsuma, and Y. Kado, “A 0.2-0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer,” Appl. Phys. Lett. 93, 093508 1–3 (2008).
  8. K.-H. Oh, N. Shimizu, N. Kukutsu, Y. Kado, S. Kohjiro, K. Kikuchi, T. Yamada, and A. Wakatsuki, “Heterodyne THz-wave receiver with a superconducting tunneling mixer driven by a high sweeping-speed photonics-based THz-wave local oscillator,” IEICE Electronics Express 6, 10 601–606 (2009).
  9. H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
    [Crossref]

2004 (1)

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

1998 (2)

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Bocquet, R.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Cohen, E. A.

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

Drouin, B. J.

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

Hindle, F.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Lampin, J. F.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Lippens, D.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Matton, S.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Mouret, G.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Pearson, J. C.

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

Peytavit, E.

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

Pickett, H. M.

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

Appl. Phys. B (2)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998).
[Crossref]

Other (6)

N. Shimizu, H.J. Song, Y. Kado, T. Furuta, A. Wakatsuki, and Y. Muramoto, “Gas detection using terahertz waves,” NTT Technical Review 7, 3 37–40 (2009).

N. Shimizu, H.-J. Song, T. Furuta, R. Fukazawa, K. Suizu, T. Nagatsuma, and Y. Kado, “Active gas sensing with sub-terahertz waves reflected from a wall,” Conference Digest of IRMMW-THz, R5D7 1293 (2008).

K.-H. Oh, H.-J. Song, N. Shimizu, S. Kohjiro, T. Furuta, A. Wakatsuki, K. Kikuchi, K. Suizu, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Active gas sensing with a highly- sensitive sub-terahertz receiver utilizing a superconductor-insulator-superconductor mixer and a photonics-based local oscillator,”Proc. SPIE 7215, 72150D 1–11 (2009).

A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port,” Conference Digest of IRMMW-THz, M4K2 1199 (2008).

S. Kohjiro, K. Kikuchi, M. Maezawa, T. Furuta, A. Wakatsuki, H. Ito, N. Shimizu, T. Nagatsuma, and Y. Kado, “A 0.2-0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer,” Appl. Phys. Lett. 93, 093508 1–3 (2008).

K.-H. Oh, N. Shimizu, N. Kukutsu, Y. Kado, S. Kohjiro, K. Kikuchi, T. Yamada, and A. Wakatsuki, “Heterodyne THz-wave receiver with a superconducting tunneling mixer driven by a high sweeping-speed photonics-based THz-wave local oscillator,” IEICE Electronics Express 6, 10 601–606 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Concept of the optically synchronized dual-channel THz-signal generator. (a) Configuration of the generator. (b) Composition of generated THz signals.
Fig. 2
Fig. 2 Configuration for heterodyne detection of THz-wave signal with the developed THz-signal generator.
Fig. 3
Fig. 3 Measured frequency jitter of an intermediate frequency (IF) signal.
Fig. 4
Fig. 4 Measured noise temperature of the developed active gas-sensing system. The black- and red-dotted lines are the measured T RX and corresponding input noise power of the SIS mixer heterodyne receiver, respectively.
Fig. 5
Fig. 5 IF output for a single sweep with a constant LO level.
Fig. 6
Fig. 6 IF output for two sweeps with alternating low and high LO levels.
Fig. 7
Fig. 7 Active gas-sensing measurement setup.
Fig. 8
Fig. 8 Measured spectra of N2O gas, (a) 100%. (b) 50%. (c) 25%. (d) 15%.

Metrics