E. Moore and R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13,139–13,149 (2008).

[Crossref]

J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).

[Crossref]
[PubMed]

T.-J. Ahn, J. Lee, and D. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain re-flectometer by use of Hilbert transformation,” Appl. Opt. 44, 7630–7634 (2005).

[Crossref]
[PubMed]

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).

[Crossref]

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).

[Crossref]

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).

[Crossref]
[PubMed]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).

[Crossref]
[PubMed]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).

[Crossref]

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757–1759 (CThM2) (Baltimore, Maryland, 2005).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757–1759 (CThM2) (Baltimore, Maryland, 2005).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

E. Moore and R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13,139–13,149 (2008).

[Crossref]

E. Moore and R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13,139–13,149 (2008).

[Crossref]

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757–1759 (CThM2) (Baltimore, Maryland, 2005).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).

[Crossref]
[PubMed]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

J. Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt. 43, 4189–4197 (2004).

[Crossref]
[PubMed]

T.-J. Ahn, J. Lee, and D. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain re-flectometer by use of Hilbert transformation,” Appl. Opt. 44, 7630–7634 (2005).

[Crossref]
[PubMed]

T.-J. Ahn and D. Kim, “Analysis of nonlinear frequency sweep in high-speed tunable laser sources using self-homodyne measurement and Hilbert transformation,” Appl. Opt. 46, 2394–2400 (2007).

[Crossref]
[PubMed]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).

[Crossref]

J. Martins-Filho, C. Bastos-Filho, M. Carvalho, M. Sundheimer, and A. Gomes, “Dual-Wavelength (1050nm + 1550 nm) Pumped Thulium-Doped Fiber Amplifier Characterization by Optical Frequency-Domain Reflectometer,” IEEE Photon. Technol. Lett. 15, 24–26 (2003).

[Crossref]

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).

[Crossref]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Coherent Optical Frequency Domain Reflectometry Using Phase-Decorrelated Reflected and Reference Lightwaves,” J. Lightwave Technol. 15, 1102–1109 (1997).

[Crossref]

H. Lim, J. de Boer, B. Park, E. Lee, R. Yelin, and S. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006).

[Crossref]
[PubMed]

J. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).

[Crossref]
[PubMed]

E. Moore and R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13,139–13,149 (2008).

[Crossref]

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” in Avionics Fiber-Optics and Photonics, 2006, pp. 38–39 (2006).

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1757–1759 (CThM2) (Baltimore, Maryland, 2005).

[Crossref]