Abstract

The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented. The measurement results confirm that the quasi-TM01 transverse mode lases first and dominates the lasing operation at lower current injection, while the quasi-TM00 mode lases at a higher threshold current density and becomes dominant at high current injection. The near-field and far-field measurements confirm that the lasing THz beam is maneuvered by 25° in emission angle, when the current density changes from 1.9 kA/cm2 to 2.3 kA/cm2. A two-dimension (2D) current and mode calculation provides a simple model to explain the behavior of each mode under different bias conditions.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field imaging of quantum cascade laser transverse modes

Nanfang Yu, Laurent Diehl, Ertugrul Cubukcu, Christian Pflügl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso
Opt. Express 15(20) 13227-13235 (2007)

Chirped coupled ridge waveguide quantum cascade laser arrays with stable single-lobe far-field patterns

Yue Zhao, Jin-Chuan Zhang, Chuan-Wei Liu, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Photon. Res. 6(8) 821-824 (2018)

Continuous wave operation of a superlattic quantum cascade laser emitting at 2 THz

Chris Worrall, Jesse Alton, Mark Houghton, Stefano Barbieri, Harvey E. Beere, David Ritchie, and Carlo Sirtori
Opt. Express 14(1) 171-181 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009).
    [Crossref]
  2. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
    [Crossref] [PubMed]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113 (2007).
    [Crossref] [PubMed]
  5. E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
    [Crossref]
  6. Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
    [Crossref] [PubMed]
  7. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
    [Crossref]
  8. J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
    [Crossref] [PubMed]
  9. A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
    [Crossref] [PubMed]
  10. N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
    [Crossref]
  11. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46(22), 5051–5055 (2007).
    [Crossref] [PubMed]
  12. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
    [Crossref]
  13. M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
    [Crossref] [PubMed]
  14. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
    [Crossref]
  15. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
    [Crossref]
  16. S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
    [Crossref]
  17. E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density matrix model applied to three-well terahertz quantum cascade lasers,” Accepted in Phys. Rev. B (2010).
  18. G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
    [Crossref]
  19. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
    [Crossref] [PubMed]
  20. P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
    [Crossref]
  21. M. I. Amanti, C. Walther, M. Fischer, N. Hoyler, L. Sirigu, G. Scalari, and J. Faist, “Study and improvement of THz quantum cascade laser beam-pattern for different waveguides configurations,”, The Ninth International Conference on Intersubband Transitions in Quantum Wells (ITQW 2007), 2007, http://www.itqw07.leeds. ac.uk/abs/M_I_Amanti_Study_and_improvement.pdf .
  22. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
    [Crossref]
  23. S. L. Chuang, “Physics of optoelectronic devices,” John Wiley and sons Inc: New York (1995).
  24. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [Crossref] [PubMed]
  25. A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
    [Crossref]

2010 (1)

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

2009 (5)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009).
[Crossref]

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
[Crossref] [PubMed]

2008 (5)

M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
[Crossref] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

2007 (9)

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[Crossref] [PubMed]

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46(22), 5051–5055 (2007).
[Crossref] [PubMed]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref] [PubMed]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113 (2007).
[Crossref] [PubMed]

2006 (1)

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

2005 (1)

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Adam, A. J. L.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Aers, G. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

Andrews, A. M.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Andronico, A.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Ban, D.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Barbieri, S.

Beck, M.

Beere, H. E.

Botez, D.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Boucherif, A.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Bour, D.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[Crossref] [PubMed]

Cao, J. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[Crossref] [PubMed]

Chassagneux, Y.

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Colombelli, R.

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Corzine, S.

Coudevylle, J. R.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Crozier, K. B.

Cubukcu, E.

D’Souza, M.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Danylov, A. A.

Davies, A. G.

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Detz, H.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Deutsch, C.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Dhillon, S.

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[Crossref] [PubMed]

Dupont, E.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Faist, J.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
[Crossref] [PubMed]

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Fathololoumi, S.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Filloux, P.

Fischer, M.

J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
[Crossref] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

Gao, J. R.

M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Gatesman, A. J.

Gellie, P.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Giles, R. H.

Giovannini, M.

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

Gmachl, C.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Goyette, T. M.

Graf, M.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

Hajenius, M.

Höfler, G.

Hovenier, J. N.

M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Hoyler, N.

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

Hu, Q.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009).
[Crossref]

A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113 (2007).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Kasalynas, I.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Khosropanah, P.

Klaassen, T. O.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Klang, P.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Klapwijk, T. M.

M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Kumar, S.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009).
[Crossref]

S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113 (2007).
[Crossref] [PubMed]

A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Laframboise, S. R.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Lee, A. M.

Leo, G.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Linden, K. J.

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Lipson, M.

Liu, H. C.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Lloyd-Hughes, J.

Luo, H.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Lyakh, A.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Maineult, W.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Maineults, W.

Mujagic, E.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Neal, W. R.

Nixon, W. E.

Nobile, M.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Orlova, E. E.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Painter, O.

Pflugl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Pflügl, C.

Preston, K.

Qin, Q.

Reno, J. L.

Ritchie, D. A.

Robinson, J. T.

Scalari, G.

J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
[Crossref] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

Schrenk, W.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Shu, G.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Sirtori, C.

M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008).
[Crossref] [PubMed]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

Strasser, G.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

Terazzi, R.

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Unterrainer, K.

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

van Kolck, A.

Waldman, J.

Walther, C.

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Wanke, M. C.

Wasilewski, Z. R.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

Wasserman, D.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Wei Min Lee, A.

Williams, B. S.

A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113 (2007).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[Crossref] [PubMed]

Zhu, J.

Zory, P.

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, “Population inversion by resonant tunneling in quantum wells,” Appl. Phys. Lett. 91(3), 032103 (2007).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90(4), 041112 (2007).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009).
[Crossref]

E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically emitting terahertz quantum cascade ring lasers,” Appl. Phys. Lett. 95(1), 011120 (2009).
[Crossref]

A. Lyakh, P. Zory, D. Wasserman, G. Shu, C. Gmachl, M. D’Souza, D. Botez, and D. Bour, “Narrow stripe-width, low-ridge high power quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141107 (2007).
[Crossref]

Electron. Lett. (1)

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron. 46(3), 396–404 (2010).
[Crossref]

J. Appl. Phys. (2)

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys. 104(12), 124513 (2008).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
[Crossref]

Nat. Photonics (3)

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Other (3)

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density matrix model applied to three-well terahertz quantum cascade lasers,” Accepted in Phys. Rev. B (2010).

S. L. Chuang, “Physics of optoelectronic devices,” John Wiley and sons Inc: New York (1995).

M. I. Amanti, C. Walther, M. Fischer, N. Hoyler, L. Sirigu, G. Scalari, and J. Faist, “Study and improvement of THz quantum cascade laser beam-pattern for different waveguides configurations,”, The Ninth International Conference on Intersubband Transitions in Quantum Wells (ITQW 2007), 2007, http://www.itqw07.leeds. ac.uk/abs/M_I_Amanti_Study_and_improvement.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic presentation of the THz QCL structure: The Au contacts on the sides are 13 μm away form each side of the ridge. Definition of the angles for far-field measurement and simulation is shown in the graph. The inset shows the SEM micrograph of the fabricated 150 μm wide laser ridge.
Fig. 2
Fig. 2 (a) The collected THz light (optical output power) versus current curves for a 150 μm wide and 1 mm long THz QCL at different heat sink temperatures. The device is biased in pulsed mode (pulse width = 200 ns and repetition rate = 25 Hz). The IV characteristic is measured at 4.2 K using 200 ns pulses. The light is collected within a 40° emission cone. The slope change in L-I curve is attributed to the change of the mode excited inside the laser ridge waveguide. Lasing is observed up to a maximum temperature of 93 K. The horizontal arrow highlights the transparency current on V-I curve. (b) The collected THz light versus current curves for each mode. The TM00 is collected directly in front of the facet and the TM01 is collected by moving the detector off the normal direction by 25°. The collection cone in each case is 13°.
Fig. 3
Fig. 3 (a)–(c) Near-field image of the 150 μm THz QCL ridge at different current injection levels (a- 2.9 A, b- 3.2 A, and c- 3.4 A). At lower current levels the clearly visible two lobes confirm the existence of only the TM01 mode (a). By increasing the current the fundamental mode catches up (b) until at very high current mainly the TM00 mode is excited (c). d-f) Far-field measurement results of the THz QCL at various current levels (d- 2.9 A, e- 3.2 A, and f- 3.4 A). At lower current level (I = 2.9 A), when only the TM01 mode is excited the beam pattern emits to angles beyond 20° (d). At I = 3.2 A by exciting the fundamental mode, the normal direction of the far-field is filled up (e). Further increase of the current up to I = 3.4 A leaves mainly the fundamental mode operating and the far-field beam pattern is focused within angles of ± 20°.
Fig. 4
Fig. 4 Lasing spectra of the THz QCL at 10 K for various injection currents measured at 0° and 25° angles. Two families of Fabry-Perot modes are identified with the equal spacing (double-end arrows). By increasing the injection current the TM01 mode diminishes and the TM00 mode emerges. The resolution of the spectra is 0.1 cm−1.
Fig. 5
Fig. 5 HFSS simulation results for the far-field of the THz QCL depicted in Fig. 1 for (a) the TM00 and (b) the TM01 modes. The radiation wavelength for each mode is read from Fig. 4.
Fig. 6
Fig. 6 Simulated vertical current density (Jy ) profile at four different applied voltages (12.1, 13, 14, and 15.1 V). The current density profile is plotted though a cross section that is 5 μm below the top of the ridge. The two dashed lines show the corresponding current density at threshold for TM01 and TM00 modes. The inset shows the measured vertical conductivity of the active region versus the vertical electric field as measured from a metal-metal ridge laser. This curve is used in simulating the non-uniform 2D current profile. The inset also compares the simulated vertical current density with the experimental current in Fig. 2(a), and current of the micro-disc used to calculate the conductivity. The simulated V-I curve agrees with the experimental results with a less than 1.5% mean square error.
Fig. 7
Fig. 7 Estimated intrinsic gain of the active region versus current density for three well LO-phonon based THz QCL active region. The curve is extracted from the L-I characteristic of a metal-metal device that is made of the same active region material. The negative differential resistance of this device is at 3.15 kA/cm2.The curve is employed to calculate the net modal gain of the TM00 and TM01 modes.
Fig. 8
Fig. 8 Net model gain versus different applied voltage, calculated for the TM01 and TM00 modes. The TM01 mode reaches the threshold around the voltage of 2.04 kA/cm2 (13.95 V). TM00 mode reaches the threshold around the voltage of 2.11 kA/cm2 (14.13 V). The arrows show the threshold for each mode. The right axis re-plots the modal light curve versus voltage, from Fig. 2, to compare the simulated modal threshold with the experiments. The inset shows the 2D mode profiles of the TM00 and TM01 modes. The two main opposite phase lobes of TM01 are 85 μm apart.

Tables (1)

Tables Icon

Table 1 Calculated modal waveguide and mirror loss values in cm−1

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λm=2nLm,
Gij=ARMij(x,y)g(x,y)dxdy,
Mij(x,y)=Re(Eij(x,y)×Hij*(x,y))z^TotalRe(Eij(x,y)×Hij*(x,y))z^dxdy,
x(σxVx)+y(σyVy)=0,
σy=f(Ey).
Gijnet=ARMij(x,y)g(x,y)dxdyαtotij.

Metrics