Abstract

This work demonstrates the comparative studies of non-radiative resonance energy transfer in bi-polymer nanoparticles based on fluorescent conjugated polymers. For this purpose, poly[(9,9-dihexylfluorene) (PF) as a donor (D) and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as an acceptor (A) have been utilized, from which four different bi-polymer nanoparticle systems are designed and synthesized. Both, steady-state fluorescence spectra and time-resolved fluorescence measurements indicate varying energy transfer efficiencies from the host polymer PF to the acceptor polymer MEH-PPV depending on the D-A distances and structural properties of the nanoparticles. The first approach involves the preparation of PF and MEH-PPV nanoparticles separately and mixing them at a certain ratio. In the second approach, first PF and MEH-PPV solutions are mixed prior to nanoparticle formation and then nanoparticles are prepared from the mixture. Third and fourth approaches involve the sequential nanoparticle preparation. In the former, nanoparticles are prepared to have PF as a core and MEH-PPV as a shell. The latter is the reverse of the third in which the core is MEH-PPV and the shell is PF. The highest energy transfer efficiency recorded to be 35% is obtained from the last system, in which a PF layer is sequentially formed on MEH-PPV NPs.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared

San-Hui Chi, Joel M. Hales, Matteo Cozzuol, Charles Ochoa, Madison Fitzpatrick, and Joseph W. Perry
Opt. Express 17(24) 22062-22072 (2009)

Quantum efficiency enhancement in film by making nanoparticles of polyfluorene

Ilkem Ozge Huyal, Tuncay Ozel, Donus Tuncel, and Hilmi Volkan Demir
Opt. Express 16(17) 13391-13397 (2008)

Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, Liam O’Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel
Opt. Express 14(20) 9211-9216 (2006)

References

  • View by:
  • |
  • |
  • |

  1. F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
    [Crossref]
  2. F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
    [Crossref]
  3. B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
    [Crossref]
  4. A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
    [Crossref]
  5. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (New York: Springer, 2006).
  6. K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
    [Crossref]
  7. A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
    [Crossref]
  8. K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
    [Crossref]
  9. J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
    [Crossref]
  10. J. Zheng and T. M. Swager, “Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes,” Chem. Comm. 2798–2799 (2004).
    [Crossref] [PubMed]
  11. Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
    [Crossref]
  12. S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
    [Crossref]
  13. H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).
  14. J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
    [Crossref]
  15. N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
    [Crossref]
  16. S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
    [Crossref]
  17. C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
    [Crossref] [PubMed]
  18. T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
    [Crossref] [PubMed]
  19. T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
    [Crossref]
  20. C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).
  21. S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
    [Crossref]
  22. I. O. Huyal, T. Ozel, D. Tuncel, and H. V. Demir, “Quantum efficiency enhancement in film by making nanoparticles of polyfluorene,” Opt. Express 16(17), 13391–13397 (2008).
    [Crossref] [PubMed]
  23. N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
    [Crossref] [PubMed]
  24. C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
    [Crossref]
  25. F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
    [Crossref] [PubMed]
  26. H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
    [Crossref]
  27. H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
    [Crossref]
  28. C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
    [Crossref]
  29. A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
    [Crossref]
  30. A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
    [Crossref]
  31. C. J. Murphy, “Biosensors: Plasmons spring into action,” Nat. Mater. 6(4), 259–260 (2007).
    [Crossref] [PubMed]

2009 (1)

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

2008 (5)

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

I. O. Huyal, T. Ozel, D. Tuncel, and H. V. Demir, “Quantum efficiency enhancement in film by making nanoparticles of polyfluorene,” Opt. Express 16(17), 13391–13397 (2008).
[Crossref] [PubMed]

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

2007 (4)

C. J. Murphy, “Biosensors: Plasmons spring into action,” Nat. Mater. 6(4), 259–260 (2007).
[Crossref] [PubMed]

F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
[Crossref]

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

2006 (3)

S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
[Crossref]

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

2005 (2)

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

2004 (5)

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

J. Zheng and T. M. Swager, “Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes,” Chem. Comm. 2798–2799 (2004).
[Crossref] [PubMed]

2003 (3)

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

2002 (1)

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

2001 (1)

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

1999 (1)

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

1996 (1)

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

1992 (1)

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

1973 (1)

A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
[Crossref]

1971 (1)

A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
[Crossref]

Aneja, A.

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

Bagchi, B.

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

Bhatnagar, P. K.

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

Bhowmick, S.

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

Bradley, D. D. C.

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Brunner, K.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

Buckley, A. R.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Bull, B.

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

Cabanillas-Gonzalez, J.

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Chin, B. D.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Christensen, K.

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

Chu, P. K.

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

Cicek, N.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Demir, H. V.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

I. O. Huyal, T. Ozel, D. Tuncel, and H. V. Demir, “Quantum efficiency enhancement in film by making nanoparticles of polyfluorene,” Opt. Express 16(17), 13391–13397 (2008).
[Crossref] [PubMed]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Dukes, A.

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Ellinger, S.

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

Eychmüller, A.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Forster, M.

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

Fox, A. M.

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Gaponik, N.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Grigalevicius, S.

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

Günter, R.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Han, M.-Y.

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

Harada, H.

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Hill, J.

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Hirota, N.

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

Hofstraat, J. W.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

Holder, E.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Hong, S.-K.

S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
[Crossref]

Hooper, J.

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Huang, G. S.

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

Huyal, I. O.

I. O. Huyal, T. Ozel, D. Tuncel, and H. V. Demir, “Quantum efficiency enhancement in film by making nanoparticles of polyfluorene,” Opt. Express 16(17), 13391–13397 (2008).
[Crossref] [PubMed]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Hyodo, K.

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

Jiang, Y.

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

Kakuta, A.

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Kamatani, H.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

Kaminski, J.

A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
[Crossref]

A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
[Crossref]

Karatay, D. U.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Kasai, H.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Kawski, A.

A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
[Crossref]

A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
[Crossref]

Kietzke, T.

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Kim, J. K.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Kim, J. Y.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Kim, J.-J.

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

Kim, Y. C.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Kong, F.

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
[Crossref]

Kumke, M.

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

Kurokawa, N.

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

Kuten, E.

A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
[Crossref]

A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
[Crossref]

KyeongKim, J.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Lai, Y.-H.

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

Landfester, K.

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Langeveld-Voss, B. M. W.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

Lee, C.-L.

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

Lesnyak, V.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Lyons, B. P.

B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
[Crossref]

Mashuhara, H.

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

Mathur, N.

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

Mathur, P. C.

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

Matsuda, H.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

McNeill, J.

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Minami, N.

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Monkman, A. P.

B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
[Crossref]

Montenegro, R.

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Mukoh, A.

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Murphy, C. J.

C. J. Murphy, “Biosensors: Plasmons spring into action,” Nat. Mater. 6(4), 259–260 (2007).
[Crossref] [PubMed]

Mutlugun, E.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Mya, K. Y.

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

Nakanishi, H.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Nakayama, H.

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Nalwa, H. S.

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Nam, S. W.

S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
[Crossref]

Neher, D.

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Nizamoglu, S.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Noh, Y.-Y.

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

Oikawa, H.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

Okada, S.

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Ono, K.

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

Onoda, M.

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Otto, T.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Ozel, T.

I. O. Huyal, T. Ozel, D. Tuncel, and H. V. Demir, “Quantum efficiency enhancement in film by making nanoparticles of polyfluorene,” Opt. Express 16(17), 13391–13397 (2008).
[Crossref] [PubMed]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Özel, T.

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Park, J. H.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Park, O. O.

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

Peng, H.

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

Perdomo, A.

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Rahn, M. D.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

Saini, S.

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

Salazar, M. A.

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Sari, E.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Scherf, U.

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

Schoo, H. F. M.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

Shenoy, V. B.

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

Sun, Y. M.

F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
[Crossref]

Swager, T. M.

J. Zheng and T. M. Swager, “Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes,” Chem. Comm. 2798–2799 (2004).
[Crossref] [PubMed]

Syzmanski, C.

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Tada, K.

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Tian, N.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Tuncel, D.

van Dijken, A.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

van Haare, J. A. E. H.

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

Wang, F.

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

Wang, Y.

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

Wong, K. S.

B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
[Crossref]

Wu, C.

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

Wu, X. L.

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

Yase, K.

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

Yeon, K. H.

S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
[Crossref]

Yoshikawa, H.

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

Yoshino, K.

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Yuan, R. K.

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
[Crossref]

Zheng, J.

J. Zheng and T. M. Swager, “Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes,” Chem. Comm. 2798–2799 (2004).
[Crossref] [PubMed]

Zheng, Y.

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

Appl. Phys. Lett. (1)

N. Cicek, S. Nizamoglu, T. Özel, E. Mutlugun, D. U. Karatay, V. Lesnyak, T. Otto, N. Gaponik, A. Eychmüller, and H. V. Demir, “Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers,” Appl. Phys. Lett. 94(6), 061105 (2009).
[Crossref]

Chem. Comm. (1)

J. Zheng and T. M. Swager, “Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes,” Chem. Comm. 2798–2799 (2004).
[Crossref] [PubMed]

Chem. Mater. (1)

J. Cabanillas-Gonzalez, A. M. Fox, J. Hill, and D. D. C. Bradley, “Model for Energy Transfer in Polymer/Dye Blends Based on Point-Surface Dipole Interaction,” Chem. Mater. 16(23), 4705–4710 (2004).
[Crossref]

Chem. Phys. Lett. (1)

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5-6), 331–336 (2001).
[Crossref]

ChemPhysChem (1)

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Mashuhara, “Size-Dependent Spectroscopic Properties and Thermochromic Behavior in Poly(substituted thiophene) Nanoparticles,” ChemPhysChem 5(10), 1609–1615 (2004).
[Crossref] [PubMed]

J. ACS NANO (1)

C. Wu, B. Bull, C. Syzmanski, K. Christensen, and J. McNeill, “Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” J. ACS NANO 2(11), 2415–2423 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

F. Wang, M.-Y. Han, K. Y. Mya, Y. Wang, and Y.-H. Lai, “Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers,” J. Am. Chem. Soc. 127(29), 10350–10355 (2005).
[Crossref] [PubMed]

J. Biol. Phys. (1)

A. Aneja, N. Mathur, P. K. Bhatnagar, and P. C. Mathur, “Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics,” J. Biol. Phys. 34(5), 487–493 (2008).
[Crossref]

J. Chem. Phys. (2)

B. P. Lyons, K. S. Wong, and A. P. Monkman, “Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin,” J. Chem. Phys. 118(10), 4707–4711 (2003).
[Crossref]

Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, “Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes,” J. Chem. Phys. 118(6), 2853–2864 (2003).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

S. Saini, S. Bhowmick, V. B. Shenoy, and B. Bagchi, “Rate of excitation energy transfer between fluorescent dyes and nanoparticles,” J. Photochem. Photobiol. Chem. 190(2-3), 335–341 (2007).
[Crossref]

J. Phys. B (2)

A. Kawski, J. Kaminski, and E. Kuten, “Quenching of photoluminescence of solutions by electronic excitation transfer,” J. Phys. B 4(4), 609–620 (1971).
[Crossref]

A. Kawski, E. Kuten, and J. Kaminski, “Fluorescence quenching and nonradiative energy transfer in solutions,” J. Phys. B 6(9), 1907–1916 (1973).
[Crossref]

J. Phys. Chem. B (3)

C. Syzmanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo, A. Dukes, and J. McNeill, “Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy,” J. Phys. Chem. B 109(18), 8543–8546 (2005).
[Crossref]

C. Wu, H. Peng, Y. Jiang, and J. McNeill, “Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles,” J. Phys. Chem. B 110(29), 14148–14154 (2006).
[Crossref] [PubMed]

K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, “Mechanistic Study of Excitation Energy Transfer in Dye-Doped PPV Polymers,” J. Phys. Chem. B 106(27), 6834–6841 (2002).
[Crossref]

J. Phys. Chem. C Nanomater, Interfaces (1)

C. Wu, Y. Zheng, C. Syzmanski, and J. McNeill, “Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles,” J. Phys. Chem. C Nanomater, Interfaces 112, 1772–1781 (2008).

Jpn. J. Appl. Phys. (2)

H. Kasai, H. S. Nalwa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A Novel Preparation Method of Organic Microcrystals,” Jpn. J. Appl. Phys. 31(Part 2, No. 8A), L1132–L1134 (1992).
[Crossref]

H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, “Size-Dependent Colors and Luminescences of Organic Microcrystals,” Jpn. J. Appl. Phys. 35(Part 2, No. 2B), L221–L223 (1996).
[Crossref]

Macromol. Rapid Commun. (1)

S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester, and U. Scherf, “Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes,” Macromol. Rapid Commun. 27(3), 200–202 (2006).
[Crossref]

Macromolecules (1)

T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices,” Macromolecules 37(13), 4882–4890 (2004).
[Crossref]

N. J. Phys. (1)

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” N. J. Phys. 9, 1367–1380 (2007).

Nanotechnology (2)

J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, J. KyeongKim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology 15(9), 1217–1220 (2004).
[Crossref]

F. Kong, Y. M. Sun, and R. K. Yuan, “Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles,” Nanotechnology 18(26), 957–961 (2007).
[Crossref]

Nat. Mater. (2)

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Günter, and U. Scherf, “Novel approaches to polymer blends based on polymer nanoparticles,” Nat. Mater. 2(6), 408–412 (2003).
[Crossref] [PubMed]

C. J. Murphy, “Biosensors: Plasmons spring into action,” Nat. Mater. 6(4), 259–260 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Physica E (1)

S.-K. Hong, K. H. Yeon, and S. W. Nam, “Size-dependent electronic energy relaxation in a semiconductor nanocrystal in the strong confinement limit,” Physica E 31(1), 48–52 (2006).
[Crossref]

Synth. Met. (1)

K. Tada, H. Harada, M. Onoda, H. Nakayama, and K. Yoshino, “Percolation in carrier transport in FET with dye doped conducting polymers,” Synth. Met. 102(1-3), 981 (1999).
[Crossref]

Thin Solid Films (1)

F. Kong, X. L. Wu, G. S. Huang, R. K. Yuan, and P. K. Chu, “Tunable emission from composite polymer nanoparticles based on resonance energy transfer,” Thin Solid Films 516(18), 6287–6292 (2008).
[Crossref]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (New York: Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic representation of the proposed nanostructures for polymer nanoparticles formed from PF and MEH-PPV via the reprecipitation method. (a) System 1: (PF NP + MEH-PPV NP), (b) System 2: (PF + MEH-PPV) mixed NPs, (c) System 3: (PF/MEH-PPV) sequential NPs, and (d) System 4: (MEH-PPV/PF) sequential NPs.
Fig. 2
Fig. 2 SEM micrographs of films prepared from (a) PF solution, (b) PF NP dispersion (c) MEH-PPVa NP dispersion, and (d) (MEH-PPVa/PF) sequential NP dispersion. The last image is taken with a tilt angle of 15°.
Fig. 3
Fig. 3 Onset: Emission spectra of PF solution and its corresponding PF NP dispersion, MEH-PPVa solution and its corresponding MEH-PPVa NP dispersion, and MEH-PPVb solution and its corresponding MEH-PPVb NP dispersion. Inset: Absorption spectra of PF solution and PF NP dispersion, MEH-PPVa solution and MEH-PPVa NP dispersion, and MEH-PPVb solution and MEH-PPVb NP dispersion.
Fig. 4
Fig. 4 Onset: Emission spectra of solutions of PF, MEH-PPVa, MEH-PPVb, (PF + MEH-PPVa) and (PF + MEH-PPVb) at absorption maximum of PF (solid) and absorption maximum of MEH-PPV (dotted). Inset: Absorption spectra of PF, MEH-PPVa, MEH-PPVb, (PF + MEH-PPVa), and (PF + MEH-PPVb) solutions.
Fig. 5
Fig. 5 Onset: Emission spectra of PF NP, MEH-PPVa NP, MEH-PPVb NP dispersions and their corresponding mixtures in a 1:1 ratio as (PF NP + MEH-PPVa NP) and (PF NP + MEH-PPVb NP) at absorption maximum of PF (solid) and MEH-PPV (dotted), respectively. The concentration of each species in the NP mixtures is reduced by a factor of two due to mixing. Inset: Absorption spectra of PF NP, MEH-PPVa NP, MEH-PPVb NP dispersions and their mixtures in a 1:1 ratio, (PF NP + MEH-PPVa NP) and (PF NP + MEH-PPVb NP).
Fig. 6
Fig. 6 Onset: Emission spectra of (PF + MEH-PPVa) and (PF + MEH-PPVb) mixed NPs at absorption maximum of PF (solid) and MEH-PPV (dotted). Inset: Corresponding absorption spectra of (PF + MEH-PPV) mixed NPs.
Fig. 7
Fig. 7 Onset: Emission spectra of PF NPs, (PF/MEH-PPVa) sequential NPs at absorption maximum of PF (solid) and MEH-PPV (dotted), and (PF/MEH-PPVb) sequential NPs at absorption maximum of PF (solid) and MEH-PPV (dotted) Inset: Absorption spectra of PF NPs and (PF/MEH-PPV) sequential NPs.
Fig. 8
Fig. 8 Biexponentially fitted decay curves of PF NPs at 429 nm (0.26 ns), MEH-PPVa NPs at 589 nm (0.51 ns) and (PF/MEH-PPVa) sequential NPs at 429 nm (0.20 ns) and 566 nm (1.22 ns). Reported lifetimes are average intensity weighted values and decay fit parameter “R” ranges from 0.8 to 1.2.
Fig. 9
Fig. 9 a) Onset: Emission spectra of MEH-PPV NPs, (MEH-PPVa/PF) sequential NPs at absorption maximum of PF (solid) and MEH-PPV (dotted). Inset: Absorption spectra of MEH-PPV NPa and (MEH-PPVa/PF) sequential NPs, b) Onset: Emission spectra of MEH-PPVb NPs, (MEH-PPVb/PF) sequential NPs at absorption maximum of PF (solid) and MEH-PPV (dotted). Inset: Absorption spectra of MEH-PPVb NP and (MEH-PPVb/PF) sequential NPs.
Fig. 10
Fig. 10 Biexponentially fitted decay curves of PF NPs at 429 nm (0.26 ns), MEH-PPVa NPs at 589 nm (0.51 ns) and (MEH-PPVa/PF) sequential NPs at 425 nm (0.17 ns) and 561 nm (0.90 ns). Reported lifetimes are average intensity weighted values and decay fit parameter “R” ranges from 0.8 to 1.1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = 1 τ D A τ D
η = 1 F D A F D
R 0 6 = 9000 ( ln 10 ) κ 2 Q D 128 π 5 N n 4 0 F D ( λ ) ε A ( λ ) λ 4 d λ
F D A F D = 1 π 1 / 2 γ exp ( γ 2 ) [ 1 e r f ( γ ) ]

Metrics