Abstract

Hybrid large mode area Ytterbium-doped double-cladding photonic crystal fibers with anti-symmetric high refractive index inclusions provide efficient amplified spontaneous emission spectral filtering. Their performances have been analyzed by numerical simulations and experimental measurements. In particular, the fiber single-mode behaviour has been studied, by taking into account the fundamental and the first higher-order mode. Two approaches, the core down-doping and the reduction of the air-hole diameter in the inner cladding, have been successfully applied to reduce the higher-order mode content, regardless of the bending of the doped fiber, without significantly affecting its spectral filtering properties.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers

F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri
Opt. Express 19(10) 9896-9907 (2011)

Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

Sidsel R. Petersen, Thomas T. Alkeskjold, Federica Poli, Enrico Coscelli, Mette M. Jørgensen, Marko Laurila, Jesper Lægsgaard, and Jes Broeng
Opt. Express 20(6) 6010-6020 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
    [Crossref]
  2. A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
    [Crossref]
  3. V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
    [Crossref]
  4. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J.K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express17, 447–454 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-447 .
    [Crossref] [PubMed]
  5. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-2-926 .
    [Crossref]
  6. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15, 15637–15647 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15637 .
    [Crossref] [PubMed]
  7. A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.
  8. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express17, 16394–16405 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-19-16394 .
    [Crossref] [PubMed]
  9. T. T. Alkeskjold, “Single-mode large-mode area fiber amplifier with higher-order mode suppression and distributed passband filtering of ASE and SRS,” Proc. SPIE 7580, 758012 (2010).
    [Crossref]
  10. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm,” Opt. Express18, 16345–16352 (2010). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16345 .
    [Crossref] [PubMed]
  11. F. Poli, A. Cucinotta, and S. Selleri, Photonic crystal fibers. Properties and applications (Springer series in Material Science, 2007), Vol. 102.
  12. L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical modeling of S-Band EDFA based on distributed fiber loss,” J. Lightwave Technol. 26, 2168–2174 (2008).
    [Crossref]
  13. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol. 21, 782–788 (2003).
    [Crossref]
  14. F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
    [Crossref]

2010 (1)

T. T. Alkeskjold, “Single-mode large-mode area fiber amplifier with higher-order mode suppression and distributed passband filtering of ASE and SRS,” Proc. SPIE 7580, 758012 (2010).
[Crossref]

2009 (1)

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

2008 (3)

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical modeling of S-Band EDFA based on distributed fiber loss,” J. Lightwave Technol. 26, 2168–2174 (2008).
[Crossref]

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

2007 (1)

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

2003 (1)

Alkeskjold, T. T.

T. T. Alkeskjold, “Single-mode large-mode area fiber amplifier with higher-order mode suppression and distributed passband filtering of ASE and SRS,” Proc. SPIE 7580, 758012 (2010).
[Crossref]

Bigot, L.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Bowmans, G.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Broeng, J.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Cerqueira, A.

A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.

Cucinotta, A.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical modeling of S-Band EDFA based on distributed fiber loss,” J. Lightwave Technol. 26, 2168–2174 (2008).
[Crossref]

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic crystal fibers. Properties and applications (Springer series in Material Science, 2007), Vol. 102.

Denninger, M.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Douay, M.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Fontes, L. M.

A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.

Foroni, M.

Fragnito, H. L.

A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.

Galvanauskas, A.

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

Hansen, K. P.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Jakobsen, C.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Jaouen, Y.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Kai-Chung, H.

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

Kai-Hsiu, L.

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

Lægsgaard, J.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

Lona, D. G.

A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.

Maini, M.

Mattsson, K.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Ming-Yuan, C.

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

Nielsen, M. D.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Nikolajsen, T.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Olausson, C. B.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Passaro, D.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

Poli, F.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical modeling of S-Band EDFA based on distributed fiber loss,” J. Lightwave Technol. 26, 2168–2174 (2008).
[Crossref]

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic crystal fibers. Properties and applications (Springer series in Material Science, 2007), Vol. 102.

Pureur, V.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Quinquempois, Y.

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Selleri, S.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical modeling of S-Band EDFA based on distributed fiber loss,” J. Lightwave Technol. 26, 2168–2174 (2008).
[Crossref]

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic crystal fibers. Properties and applications (Springer series in Material Science, 2007), Vol. 102.

Simonsen, H. R.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Skovgaard, P. M. W.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Sorensen, M. H.

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

Vincetti, L.

Zoboli, M.

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bowmans, Y. Quinquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Galvanauskas, C. Ming-Yuan, H. Kai-Chung, and L. Kai-Hsiu, “High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009).
[Crossref]

J. Lightwave Technol. (2)

Proc. SPIE (2)

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattsson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sorensen, M. Denninger, C. Jakobsen, and H. R. Simonsen, “Airclad fiber laser technology,” Proc. SPIE 6873, 687307–68718 (2008).
[Crossref]

T. T. Alkeskjold, “Single-mode large-mode area fiber amplifier with higher-order mode suppression and distributed passband filtering of ASE and SRS,” Proc. SPIE 7580, 758012 (2010).
[Crossref]

Other (7)

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm,” Opt. Express18, 16345–16352 (2010). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16345 .
[Crossref] [PubMed]

F. Poli, A. Cucinotta, and S. Selleri, Photonic crystal fibers. Properties and applications (Springer series in Material Science, 2007), Vol. 102.

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J.K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express17, 447–454 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-447 .
[Crossref] [PubMed]

A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-2-926 .
[Crossref]

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15, 15637–15647 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15637 .
[Crossref] [PubMed]

A. Cerqueira, D. G. Lona, L. M. Fontes, and H. L. Fragnito, “Single-polarization State Hybrid Photonic Crystal Fiber,” Proc. ECOC 2010, Turin, Italy, 19–23 Sept. 2010.

T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express17, 16394–16405 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-19-16394 .
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (Left) Optical micrograph of the manufactured A1 DSF PCF. (Right) Simulated cross-section half of the DSF fiber.
Fig. 2
Fig. 2 (a) Experimentally measured transmitted output power for straight and bent (with 40 cm coil diameter) DSF fiber. (b) Calculated overlap integral Γ for the FM of the straight and bent (with 40 cm coil diameter) DSF fiber.
Fig. 3
Fig. 3 FM magnetic field modulus distribution at (left) 970 nm and (right) 1050 nm for the 40 cm-bent DSF fiber.
Fig. 4
Fig. 4 Overlap integral Γ of the first HOMs (a) for the straight fiber and (b) for the fiber bent with a diameter of 40 cm.
Fig. 5
Fig. 5 Magnetic field modulus distribution at 1130 nm of the (left) HOM11 and (right) HOM12 of the straight DSF fiber.
Fig. 6
Fig. 6 Overlap integral Γ (a) of the FM for straight and 40 cm-bent down-doped core DSF fiber, and (b) of the HOMs for the straight fiber.
Fig. 7
Fig. 7 Overlap integral Γ (a) of the FM and (b) of the HOMs for the DSF PCF with d/Λ=0.1, bent with a diameter of 40 cm.
Fig. 8
Fig. 8 FM magnetic field modulus distribution at 1030 nm for the 40 cm-bent DSF fiber with (left) d/Λ = 0.15 and (right) d/Λ = 0.1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = S d i ( x , y ) dxdy ,

Metrics