Abstract

We designed, fabricated, and tested, polarization selective, graded-reflectivity resonant filters; based on a radial-gradient spatially-distributed, guided-mode resonance device architecture. The demonstrated filters have polarized spectral-resonance responses, distributed across their aperture extent, in the range between 1535nm and 1540nm wavelengths. Spectral sensitivity was observed on device tests, for wavelength changes as low as 0.2nm. Using multiple lithographic exposures and biasing exposure methods, the devices were engineered to have a sub-aperture region, with no hard boundaries or diffraction anomalies.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization

Kenji Kintaka, Tatsuya Majima, Junichi Inoue, Koji Hatanaka, Junji Nishii, and Shogo Ura
Opt. Express 20(2) 1444-1449 (2012)

Optical spectrometer based on continuously-chirped guided mode resonance filter

Yung-Jr Hung, Chia-Wei Kao, Tzu-Chieh Kao, Chia-Wei Huang, Jia-Jin Lin, and Chuan-Ci Yin
Opt. Express 26(21) 27515-27527 (2018)

Spatial and spectral beam shaping with space-variant guided mode resonance filters

Pradeep Srinivasan, Menelaos K. Poutous, Zachary A. Roth, Yigit O. Yilmaz, Raymond C. Rumpf, and Eric G. Johnson
Opt. Express 17(22) 20365-20375 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
    [Crossref]
  2. A. Parent and P. Lavigne, “Variable reflectivity unstable resonators for coherent laser radar emitters,” Appl. Opt. 28(5), 901–903 (1989).
    [Crossref] [PubMed]
  3. G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, and S. Bussiere, “Graded-reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32(7), 1145–1153 (1993).
    [Crossref] [PubMed]
  4. A. Piegari and G. Emiliani, “Laser mirrors with variable reflected intensity and uniform phase shift: design process,” Appl. Opt. 32(28), 5454–5461 (1993).
    [Crossref] [PubMed]
  5. M. Keselbrener and S. Ruschin, “Frequency-dependent graded reflectivity mirror: characterization and laser implementation,” Appl. Opt. 38(30), 6317–6324 (1999).
    [Crossref]
  6. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  7. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  8. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34(35), 8106–8109 (1995).
    [Crossref] [PubMed]
  9. A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
    [Crossref]
  10. A. Fehrembach and A. Sentenac, “Study of waveguide grating eigenmodes for unpolarized filtering applications,” J. Opt. Soc. Am. A 20(3), 481–488 (2003).
    [Crossref]
  11. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
    [Crossref] [PubMed]
  12. P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
    [Crossref] [PubMed]
  13. D. Fattal, J. Li, Z. Peng, M. Fiorentino and R. G. Beausoleil, “Flat dielectric grating reflectors with high focusing power,” (2010).
  14. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [Crossref] [PubMed]
  15. M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
    [Crossref]
  16. P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
    [Crossref]
  17. J. Sung, H. Hockel, and E. G. Johnson, “Analog micro-optics fabrication by use of a two-dimensional binary phase-grating mask,” Opt. Lett. 30(2), 150–152 (2005).
    [Crossref] [PubMed]
  18. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18(12), 12606–12614 (2010).
    [Crossref] [PubMed]
  19. D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9831–9842 (2007).
    [Crossref] [PubMed]

2010 (2)

2009 (3)

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

2007 (2)

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9831–9842 (2007).
[Crossref] [PubMed]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

2005 (1)

2003 (2)

1999 (1)

1997 (2)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1995 (1)

1993 (3)

1989 (1)

Buhl, K.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

Bussiere, S.

Chang-Hasnain, C. J.

Chase, C.

Dobrowolski, J. A.

Duplain, G.

Emiliani, G.

Fehrembach, A.

Flury, M.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Hockel, H.

Johnson, E. G.

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

J. Sung, H. Hockel, and E. G. Johnson, “Analog micro-optics fabrication by use of a two-dimensional binary phase-grating mask,” Opt. Lett. 30(2), 150–152 (2005).
[Crossref] [PubMed]

Karagodsky, V.

Keselbrener, M.

Lavigne, P.

Lu, F.

Magnusson, R.

Mehta, A. A.

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

Morin, M.

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[Crossref]

Morris, G. M.

Parent, A.

Parriaux, O.

Piegari, A.

Pietroy, D.

Poutous, M. K.

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

Pung, A.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Roth, Z.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

Roth, Z. A.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

Rumpf, R. C.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

Ruschin, S.

Sedgwick, F. G.

Sentenac, A.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Srinivasan, P.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17(22), 20365–20375 (2009).
[Crossref] [PubMed]

Sung, J.

Thurman, S. T.

Tishchenko, A. V.

Verly, P. G.

Waldorf, A.

Wang, S. S.

Yilmaz, Y. O.

Appl. Opt. (7)

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[Crossref]

J. Micro/Nanolith. MEMS- MOEMS (1)

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS- MOEMS 8, 013010 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[Crossref]

Proc. SPIE (1)

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[Crossref]

Other (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino and R. G. Beausoleil, “Flat dielectric grating reflectors with high focusing power,” (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration to test the functionality of a polarization sensitive GMRF filter, based on a two-dimensional grating diffractive structure. The incident field has an arbitrary linear polarization orientation α, and it is incident normally on the GMRF. The linear polarization axes of the GMRF are indicated as σ and π. The transmitted fields can be analyzed by rotating the linear polarizer (analyzer) through angles γ.
Fig. 2
Fig. 2 Schematic diagram of the transverse intensity profiles passing through the proposed graded-transmittance filter, with wavelength dependent polarization selectivity. The wavelengths shown (λ1, λ2, λ3) are in increasing order, and the analyzer orientation (φ) is arbitrary. The analyzer position φ-π/4 allows mixed linear polarization states to pass through, where the orientation φ allows only pure states. The wavelength response is location dependent across the filter aperture by design.
Fig. 3
Fig. 3 RCWA simulated resonant-response of (a) a polarization insensitive, and (b) a polarization sensitive GMRF, as a function of the hexagonal basis-cell hole diameter d. In (b) the orthogonal axes σ and π are shown with respect to the “defect” in the hexagonal unit cell. The incident polarization state of the simulated field is direction α (along the bisector of the σ-π angle). The curves represent resonant reflectance with the dark red color as 100% and the navy blue as 0%, or resonant transmittance with the color scheme reversed.
Fig. 4
Fig. 4 RCWA simulated resonance response of the polarization sensitive GMRF with constant grating basis-cell hole diameters. The device simulated has a hexagonal basis cell, with a 560nm hole “defect” inserted as shown in the graphic. All the other structural values are the same as in Fig. 3, with hexagonal basis-cell hole diameters of 750nm. The resonance is not constant as a function of the incident field polarization. The resonance spectral line crossections for the π- (30°, blue points) and σ-polarization (120°, red points) incident field states are shown to the right. The π-peak maximum is located at 1535.4nm, and the σ-peak maximum at 1536.7nm. The resonance FWHM are 0.6nm and 0.7nm respectively. The incident polarized field orientations are measured clock-wise from the horizontal direction shown in the insert as the dashed axis.
Fig. 5
Fig. 5 (a) Schematic illustrating the radial gradient duty-cycle variation of the P-GRRF hexagonal basis-cell hole diameters, for two separate zones in the device. The SEM images shown in the inserts to the right are from the etched final devices, after the exposures of the cells and the circular bias profile. (b) Low magnification SEM micrograph of the etched biased-grating layer. The circular exposure-bias footprint contrasts against the uniform unbiased device around it. This boundary defines the device soft aperture.
Fig. 6
Fig. 6 RCWA simulation of the resonant normalized reflected intensity (a), and phase in radians (b), of the P-GRRF, as a function of the device radial polar coordinate ρ. The incident field has a polarization direction β as shown in the insert. (c) and (d) are horizontal data sections from (a) and (b) for the fixed wavelengths given in µm in the legend. The normalized reflected intensity and phase are shown as a function of the radial polar coordinate ρ. (e) and (f) are the corresponding normalized transmitted intensity and phase results, for the same incident wavelengths across the aperture of the optic. The functional dependence of the P-GRRF hexagonal basis-cell diameter to the radial coordinate is given in the text by Eq. (3). The shaded regions indicate the location of a bright (dark) ring in reflection (transmission) at a wavelength of 1537nm. The reflected phase in the central region of the device has a π/2 phase shift to the outer region.
Fig. 7
Fig. 7 Schematic diagram of the optical test setup. Light from the tunable laser source is expanded to a 3mm diameter collimated beam, through a single mode fiber-optic cable. The output is linearly polarized. The beam is incident along the normal direction on the 1.7mm diameter P-GRRF device, and then it passes through a 3mm hard-aperture linear polarizer. The polarizer is rotated through 360° to act as an analyzer of the P-GRRF transmitted signal. A COHU 7512 CCD camera is used to directly image the beam profile, without any collimation or focusing optics.
Fig. 8
Fig. 8 3D view of the measured beam-profile intensity transmitted through the analyzer, using the test setup in Fig. 7. The laser source wavelength and polarization (β), and the orientation of the analyzer (γ) are shown for each case at the bottom of the figures. The “rim” around the beam profile is due to diffraction from the analyzer’s hard-aperture. The diametrically opposite missing segments in the circular aperture, indicated by the arrows, are due to the analyzer holder contact points. The measurements to the left are along a “mixed” P-GRRF axis condition, whereas the ones to the right are close to the pure σ orientation, and orthogonal to the input polarization β. The profiles change drastically for wavelength differences of less than a nanometer. The intensity scales are relative within the frames, but not absolute from frame to frame.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = ( g σ ( λ ) 0 0 g π ( λ ) )
G E i n c ( β ) = [ g σ ( λ ) sin | β σ | e i ζ ] σ ^ + [ g π ( λ ) cos | β π | e i ξ ] π ^
δ d ( ρ ) = 227 ρ 2 + 0.2 ρ + 85

Metrics