Abstract

We numerically investigate the operational principle and performance of stimulated Brillouin scattering based multiple microwave frequency signals measurement. The unknown signals are processed specially to generate a gain region which is measured by phase modulation to amplitude modulation converting. By sweeping the vector network analyzer, both single and multiple frequencies measurement can be achieved. The loss spectrum generated by one of the pumps is fully compensated by the gain spectrum of the other pump, which increases the measurement range from 2νB to 4νB.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering

Yongchuan Xiao, Jing Guo, Kui Wu, Pengfei Qu, Huajuan Qi, Caixia Liu, Shengping Ruan, Weiyou Chen, and Wei Dong
Opt. Express 21(3) 2718-2726 (2013)

Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter

Hengyun Jiang, David Marpaung, Mattia Pagani, Khu Vu, Duk-Yong Choi, Steve J. Madden, Lianshan Yan, and Benjamin J. Eggleton
Optica 3(1) 30-34 (2016)

Broadband instantaneous frequency measurement based on stimulated Brillouin scattering

Xin Long, Weiwen Zou, and Jianping Chen
Opt. Express 25(3) 2206-2214 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. W. East, “Fifty years of instantaneous frequency measurement,” IET Radar, Sonar Navig. 6(2), 112–122 (2012).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
    [Crossref]
  4. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
    [Crossref]
  5. J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
    [Crossref] [PubMed]
  6. X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
    [Crossref]
  7. M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
    [Crossref]
  8. W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
    [Crossref]
  9. M. V. Drummond, P. Monteiro, and R. N. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer,” Opt. Express 17(7), 5433–5438 (2009).
    [Crossref] [PubMed]
  10. H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
    [Crossref]
  11. S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
    [Crossref]
  12. J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
    [Crossref]
  13. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25(9), 837–840 (2013).
    [Crossref]
  14. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34(24), 3794–3796 (2009).
    [Crossref] [PubMed]
  15. D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2005), 249–252.
  16. L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21(10), 642–644 (2009).
    [Crossref]
  17. B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
    [Crossref]
  18. B. Vidal, “Photonic approach for instantaneous frequency and power measurement of simultaneous microwave signals,” in Proceedings of International Topical Meeting on Microwave Photonics, (IEEE, 2011), 192–194.
    [Crossref]
  19. X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
    [Crossref] [PubMed]
  20. L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
    [Crossref]
  21. S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
    [Crossref]
  22. B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2009), 1–4.
  23. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007).
    [Crossref] [PubMed]
  24. W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photon. J. 4(5), 1443–1455 (2012).
    [Crossref]
  25. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
    [Crossref] [PubMed]
  26. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
    [Crossref] [PubMed]

2013 (1)

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

2012 (6)

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

P. W. East, “Fifty years of instantaneous frequency measurement,” IET Radar, Sonar Navig. 6(2), 112–122 (2012).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photon. J. 4(5), 1443–1455 (2012).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

2011 (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

2010 (4)

B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[Crossref] [PubMed]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

2009 (7)

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34(24), 3794–3796 (2009).
[Crossref] [PubMed]

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

M. V. Drummond, P. Monteiro, and R. N. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer,” Opt. Express 17(7), 5433–5438 (2009).
[Crossref] [PubMed]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
[Crossref] [PubMed]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

2008 (1)

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007).
[Crossref] [PubMed]

2006 (1)

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Aditya, S.

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
[Crossref] [PubMed]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Attygalle, M.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Bui, L. A.

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Chi, H.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Drummond, M. V.

East, P. W.

P. W. East, “Fifty years of instantaneous frequency measurement,” IET Radar, Sonar Navig. 6(2), 112–122 (2012).
[Crossref]

Edvell, L. G.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2005), 249–252.

Englund, M. A.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2005), 249–252.

Fu, S.

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
[Crossref] [PubMed]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Ge, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

Hotate, K.

Hunter, D. B.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2005), 249–252.

Jin, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Li, J.

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Luo, B.

Margulis, W.

Marpaung, D.

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

Marti, J.

B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2009), 1–4.

Mengual, T.

B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2009), 1–4.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photon. J. 4(5), 1443–1455 (2012).
[Crossref]

Mitchell, A.

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

Monteiro, P.

Nguyen, L. V. T.

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Nogueira, R. N.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

Pan, W.

Rugeland, P.

Shum, P. P.

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
[Crossref] [PubMed]

Song, K. Y.

Sterner, C.

Sun, X.

Tarasenko, O.

Tengstrand, G.

Vidal, B.

B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[Crossref]

B. Vidal, “Photonic approach for instantaneous frequency and power measurement of simultaneous microwave signals,” in Proceedings of International Topical Meeting on Microwave Photonics, (IEEE, 2011), 192–194.
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2009), 1–4.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
[Crossref]

Xia, L.

Xu, K.

Yan, L.

Yao, J.

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Yu, Z.

Zhang, W.

W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photon. J. 4(5), 1443–1455 (2012).
[Crossref]

Zhang, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Zheng, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

Zhou, J.

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).
[Crossref] [PubMed]

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

Zou, X.

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[Crossref] [PubMed]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wirel. Compon. Lett. 19(6), 422–424 (2009).
[Crossref]

IEEE Photon. J. (2)

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 4(2), 427–436 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photon. J. 4(5), 1443–1455 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (10)

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[Crossref]

J. Zhou, S. Aditya, P. P. Shum, and J. Yao, “Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. Vidal, T. Mengual, and J. Marti, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[Crossref]

IET Radar, Sonar Navig. (1)

P. W. East, “Fifty years of instantaneous frequency measurement,” IET Radar, Sonar Navig. 6(2), 112–122 (2012).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Other (3)

B. Vidal, “Photonic approach for instantaneous frequency and power measurement of simultaneous microwave signals,” in Proceedings of International Topical Meeting on Microwave Photonics, (IEEE, 2011), 192–194.
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2009), 1–4.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2005), 249–252.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of photonic assisted single and multiple microwave frequencies measurement. (a) One pump is applied; (b) Gain and loss compensation based two pumps are applied. LD: Laser Diode, DSF: Dispersion-Shifted Fiber, OI: Optical Isolator, PC: Polarization Controller, OC: Optical Circulator.
Fig. 2
Fig. 2 The spectrum processing of frequency measurement: (a) for one pump and (b) for two pumps.
Fig. 3
Fig. 3 Only one pump is adopted: (a) single frequency is input at a time; (b) multiple frequencies are input simultaneously
Fig. 4
Fig. 4 (a) fx1 = 5GHz and fx2 = 25GHz are measured simultaneously; (b) fx = 25GHz is measured only
Fig. 5
Fig. 5 Two pumps are adopted: (a) Single frequency is input at a time; (b) Multiple frequencies are input simultaneously
Fig. 6
Fig. 6 ΔνB2 versus Δλp
Fig. 7
Fig. 7 (a) fx1 = 10GHz and fx2 = 10.036GHz are measured individually; (b) fx1 = 10GHz and fx2 = 10.036GHz are measured simultaneously
Fig. 8
Fig. 8 (a) Normalized amplitude of valley versus frequency space; (b) Frequency offset versus frequency space

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E(t)= J 0 (m)exp( j2π f c t )+ J 1 (m)exp{ j[ 2π( f c + f m )t+ π 2 ] } J 1 (m)exp{ j[ 2π( f c f m )t π 2 ] }
g( f )= g 0 2 ( Δ ν B /2 ) 2 f 2 + ( Δ ν B /2 ) 2 +j g 0 4 Δ ν B f f 2 + ( Δ ν B /2 ) 2
a( f )= g 0 2 ( Δ ν B /2 ) 2 f 2 + ( Δ ν B /2 ) 2 j g 0 4 Δ ν B f f 2 + ( Δ ν B /2 ) 2
E( t )=exp( j2π f c t ){ J 0 ( m ) + J 1 ( m )exp( { g[ ( f p ν B )( f c + f m ) ]+a[ ( f p + ν B )( f c + f m ) ] } +j( 2π f m t+ π 2 ) ) J 1 ( m )exp[ j( 2π f m t+ π 2 ) ] }
E( t )=exp( j2π f c t ){ J 0 ( m )+ J 1 ( m )exp[ g( f x f m )+a( f x +2 ν B f m )+j( 2π f m t+ π 2 ) ] J 1 ( m )exp[ j( 2π f m t+ π 2 ) ] }
P2 J 0 (m) J 1 (m){ G( f m )A( f m )cos[ 2π f m t+ π 2 + ϕ g ( f m )+ ϕ a ( f m ) ]cos(2π f m t+ π 2 ) }
G( f m )=exp{ Re[ g( f x f m ) ] }=exp{ g 0 2 ( Δ ν B /2 ) 2 ( f x f m ) 2 + ( Δ ν B /2 ) 2 }
A( f m )=exp{ Re[ a( f x +2 ν B f m ) ] }=exp{ g 0 2 ( Δ ν B /2 ) 2 ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2 }
ϕ g ( f m )=Im[ g( f x f m ) ]= g 0 4 ν B ( f x f m ) ( f x f m ) 2 + ( Δ ν B /2 ) 2
ϕ a ( f m )=Im[ a( f x +2 ν B f m ) ]= g 0 4 Δ ν B ( f x +2 ν B f m ) ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2
E out (t)=<P> G( f m )A( f m )cos[ 2π f m t+ π 2 + ϕ g ( f m )+ ϕ a ( f m ) ]cos(2π f m t+ π 2 )
E ( t ) = exp ( j 2 π f c t ) ( J 0 ( m ) J 1 ( m ) exp [ j ( 2 π f m t + π 2 ) ] + J 1 ( m ) exp { k = 1 N [ g ( f x k f m ) + a ( f x k + 2 ν B f m ) ] + j ( 2 π f m t + π 2 ) } )
E o u t ( t ) = < P > { k = 1 N [ G k ( f m ) A k ( f m ) ] } cos { 2 π f m t + π 2 + k = 1 N [ ϕ g k ( f m ) + ϕ a k ( f m ) ] } cos ( 2 π f m t + π 2 )
E( t )=exp( j2π f c t ){ J 0 ( m ) J 1 ( m )exp[ j( 2π f m t+ π 2 ) ] + J 1 ( m )exp{ [ g( f x f m )+a( f x +2 ν B f m ) +g( f x +2 ν B f m )+a( f x +4 ν B f m ) ]+j( 2π f m t+ π 2 ) } }
E out (t)GG( f m )AA( f m )cos[ 2π f m t+ π 2 + ϕ gg ( f m )+ ϕ aa ( f m ) ]cos(2π f m t+ π 2 )
GG( f m )=exp{ Re[ g( f x f m )+g( f x +2 ν B f m ) ] } =exp[ g 0 2 ( Δ ν B /2 ) 2 ( f x f m ) 2 + ( Δ ν B /2 ) 2 + g 0 2 ( Δ ν B /2 ) 2 ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2 ]
AA( f m )=exp{ Re[ a( f x +2 ν B f m )+a( f x +4 ν B f m ) ] } =exp[ g 0 2 ( Δ ν B /2 ) 2 ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2 g 0 2 ( Δ ν B /2 ) 2 ( f x +4 ν B f m ) 2 + ( Δ ν B /2 ) 2 ]
ϕ gg ( f m )=Im[ g( f x f m )+g( f x +2 ν B f m ) ] = g 0 4 ν B ( f x f m ) ( f x f m ) 2 + ( Δ ν B /2 ) 2 + g 0 4 ν B ( f x +2 ν B f m ) ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2
ϕ aa ( f m )=Im[ a( f x +2 ν B f m )+a( f x +4 ν B f m ) ] = g 0 4 Δ ν B ( f x +2 ν B f m ) ( f x +2 ν B f m ) 2 + ( Δ ν B /2 ) 2 g 0 4 Δ ν B ( f x +4 ν B f m ) ( f x +4 ν B f m ) 2 + ( Δ ν B /2 ) 2
E(t)=exp( j2π f c t ){ J 0 ( m ) J 1 ( m )exp[ j( 2π f m t+ π 2 ) ] + J 1 ( m )exp{ k=1 N [ g( f xk f m )+a( f xk +2 ν B f m ) +g( f xk +2 ν B f m )+a( f xk +4 ν B f m ) ] +j( 2π f m t+ π 2 ) } }
E out (t){ k=1 N [ G G k ( f m )A A k ( f m ) ] }cos{ 2π f m t+ π 2 + k=1 N [ ϕ ggk ( f m ) + ϕ aak ( f m ) ] }cos(2π f m t+ π 2 )
ν B = 2 n V a λ p
Δ ν B = Δ ( 2 n V a λ p ) = 2 Δ ( n V a ) λ p 2 n V a λ p 2 Δ λ p
Δ ν B 1 = 2 Δ ( n V a ) λ p = C T Δ T + C ε Δ ε
Δ ν B 2 = 2 n V a λ p 2 Δ λ p

Metrics