Abstract

A low-loss 4-ch active optical interconnect (AOI) enabling passive alignment was proposed and built resorting to a transmitter (Tx) incorporating a red 680-nm VCSEL, which is linked to a receiver (Rx) module via a partially chlorinated ribbon POF. The POF was observed to exhibit an extremely low loss of ~0.24 dB/m at λ = 680 nm, in comparison to ~1.29 dB/m at λ = 850 nm, and a large numerical aperture of ~0.42. Both the Tx and Rx, which taps into a beam router based on collimated beam optics involving a pair of spherical lenses, were meant to be substantially alignment tolerant and compact. The achieved tolerance for the constructed modules was beyond 40 μm in terms of the positioning of VCSEL and photodetector. The proposed AOI was completed by linking the Tx with the Rx via a 3-m long ribbon POF, incurring a transmission loss of as small as 3.2 dB. The AOI was practically assessed in terms of a high-speed data transmission over a wide range of temperatures and then exploited to convey full HD video signals.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance

Hak-Soon Lee, Jun-Young Park, Sang-Mo Cha, Sang-Shin Lee, Gyo-Sun Hwang, and Yung-Sung Son
Opt. Express 19(5) 4301-4309 (2011)

High-efficiency and stable optical transmitter using VCSEL-direct-bonded connector for optical interconnection

Do-Won Kim, Tae-Woo Lee, Mu Hee Cho, and Hyo-Hoon Park
Opt. Express 15(24) 15767-15775 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997).
    [Crossref]
  2. D. A. B. Miller, “Physical reasons for optical interconnection,” Intel J. Optoelectron. 11, 155–168 (1997).
  3. S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
    [Crossref]
  4. J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
    [Crossref]
  5. J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).
  6. T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
    [Crossref]
  7. H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
    [Crossref]
  8. H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
    [Crossref] [PubMed]
  9. M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).
  10. E. Palen, “Low cost optical interconnects,” Proc. SPIE 6478, 647804 (2007).
    [Crossref]
  11. A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
    [Crossref]
  12. G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
    [Crossref]
  13. K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
    [Crossref]
  14. R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
    [Crossref]
  15. S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

2013 (1)

H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
[Crossref]

2012 (2)

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
[Crossref]

2011 (1)

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

2010 (3)

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

2009 (2)

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

2007 (1)

E. Palen, “Low cost optical interconnects,” Proc. SPIE 6478, 647804 (2007).
[Crossref]

2002 (1)

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

2000 (1)

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

1997 (3)

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997).
[Crossref]

D. A. B. Miller, “Physical reasons for optical interconnection,” Intel J. Optoelectron. 11, 155–168 (1997).

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Aoyagi, M.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Cha, S. M.

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

Chai, Y. Y.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Chandrappan, J.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Chen, W. P.

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Cohen, M. S.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

DeFoster, S. M.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Dummer, M.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Giaretta, G.

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

Hashimoto, Y.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Hibbs-Brenner, M.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Hogan, W.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Hogan, W. K.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Hwang, G. S.

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

Hwang, S. H.

S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

Imada, A.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

Ishikawa, T.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Johnson, G. W.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Johnson, K.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Karst, D. L.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Khoo, Y. M.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Kikuchi, K.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Koike, Y.

R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
[Crossref]

Kondo, A.

R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
[Crossref]

Lacey, D. L.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Lee, H. S.

H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
[Crossref]

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

Lee, S. S.

H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
[Crossref]

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

Lim, J. W.

S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

Liu, R. R.

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Liu, S. C.

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Masuda, H.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Mikawa, T.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnection,” Intel J. Optoelectron. 11, 155–168 (1997).

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997).
[Crossref]

Nakagawa, H.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Nakao, R.

R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
[Crossref]

Onishi, T.

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

Oprysko, M. M.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Ouchi, T.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

Ozaktas, H. M.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997).
[Crossref]

Palen, E.

E. Palen, “Low cost optical interconnects,” Proc. SPIE 6478, 647804 (2007).
[Crossref]

Pan, J. S.

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Park, J. Y.

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

Peterson, M. D.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Ramana, P. V.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Ramkumar, V. M.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Rho, B. S.

S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

Sakata, H.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

Sato, T.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

Shing, J. L.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Son, Y. S.

H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
[Crossref]

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

Suzuki, A.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Suzuki, S.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Suzuki, T.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Tamura, M.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Tan, C. W.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Teo, W. L.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Trewhella, J. M.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Wakazono, Y.

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

Wang, T.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Wegmuller, M.

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

Weirick, J. A.

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

White, W.

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

Wu, C. Z.

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Zhang, J.

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

Adv. Opt. Technol. (1)

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

G. Giaretta, W. White, M. Wegmuller, and T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[Crossref]

J. Y. Park, H. S. Lee, S. S. Lee, and Y. S. Son, “Passively aligned transmit optical sub-assembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[Crossref]

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14(3), 263–265 (2002).
[Crossref]

IEEE Trans. Adv. Packag. (1)

J. Zhang, P. V. Ramana, J. Chandrappan, C. W. Tan, Y. Y. Chai, Y. M. Khoo, W. L. Teo, J. L. Shing, T. Wang, and V. M. Ramkumar, “Development of optical subassembly for plastic optical fiber transceiver in high-speed applications,” IEEE Trans. Adv. Packag. 33(2), 428–432 (2010).

IEEE Trans. Compon. Pack. B (1)

M. S. Cohen, G. W. Johnson, J. M. Trewhella, D. L. Lacey, M. M. Oprysko, D. L. Karst, S. M. DeFoster, W. K. Hogan, M. D. Peterson, and J. A. Weirick, “Low-cost fabrication of optical subassemblies,” IEEE Trans. Compon. Pack. B 20(3), 256–263 (1997).

Intel J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Intel J. Optoelectron. 11, 155–168 (1997).

J. Lightwave Technol. (3)

H. S. Lee, S. S. Lee, and Y. S. Son, “High tolerance receptacle type active optical interconnect incorporating collimated beam based optics,” J. Lightwave Technol. 31(5), 815–821 (2013).
[Crossref]

R. Nakao, A. Kondo, and Y. Koike, “Fabrication of high glass transition temperature graded-index plastic optical fiber: Part 2 – Fiber fabrication and characteristics,” J. Lightwave Technol. 30(7), 969–973 (2012).
[Crossref]

A. Suzuki, Y. Wakazono, T. Ishikawa, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Low-cost optical subassembly using VCSEL pre-self-aligned with optical fiber for optical interconnect applications,” J. Lightwave Technol. 27(20), 4516–4523 (2009).
[Crossref]

J. Parallel Distrib. Comput. (1)

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997).
[Crossref]

Opt. Eng. (1)

S. H. Hwang, J. W. Lim, and B. S. Rho, “Simple and high-accuracy integration for parallel optical subassembly with 120-Gbits/s data transmission,” Opt. Eng. 49(9), 095401 (2010).

Opt. Express (1)

H. S. Lee, J. Y. Park, S. M. Cha, S. S. Lee, G. S. Hwang, and Y. S. Son, “Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance,” Opt. Express 19(5), 4301–4309 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

E. Palen, “Low cost optical interconnects,” Proc. SPIE 6478, 647804 (2007).
[Crossref]

S. C. Liu, R. R. Liu, W. P. Chen, C. Z. Wu, and J. S. Pan, “Optical sub-assembly solution for single fiber optical HDMI connector,” Proc. SPIE 7229, 722906 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Configuration of the proposed low-loss 4-ch AOI based on a 680-nm VCSEL in conjunction with a partially chlorinated ribbon POF (b) Beam propagation for the AOI.
Fig. 2
Fig. 2 Passive alignment of constituent elements assisted by a reference guide.
Fig. 3
Fig. 3 Transfer curve for the 680-nm VCSEL observed at room temperature.
Fig. 4
Fig. 4 Observed characteristics of the partially chlorinated POF (a) Losses at λ = 680 and 850 nm (b) Estimation of the NA from the relation between the optical output power and the angle of incidence.
Fig. 5
Fig. 5 Arrangement of the Tx and Rx modules, with the beam propagation indicated.
Fig. 6
Fig. 6 Estimated optical coupling with the VCSEL and PD displacement for the Tx and Rx, respectively.
Fig. 7
Fig. 7 (a) Completed Tx/Rx modules (b) Passively positioned VCSLEs/PDs (c) Completed AOI encompassing the Tx, Rx and POF.
Fig. 8
Fig. 8 Measured optical coupling efficiency with respect to the VCSEL displacement for the Tx and the PD displacement for the Rx.
Fig. 9
Fig. 9 Demonstrated results of the digital data transmission at 3.4 Gbps for each of the four channels (a) Optical eye pattern for the Tx (b) Electrical eye pattern for the Rx.
Fig. 10
Fig. 10 Demonstrated results of the digital data transmission at 3.4 Gbps for different temperatures (a) Optical eye pattern for the Ch4 Tx (b) Electrical eye pattern for the Ch4 Rx.
Fig. 11
Fig. 11 Demonstration of full HD video data delivery via the manufactured AOI.

Metrics