Abstract

Self-seeded passive optical networks (PONs) are currently attracting extensive research interest. In this paper, a novel self-seeded PON transmitter is, for the first time, proposed and experimentally demonstrated, which incorporates two face-to-face-positioned reflective semiconductor optical amplifiers (RSOAs) operating at their gain saturation regions: one RSOA directly driven by an upstream electrical signal and the other RSOA biased at a fixed current. Detailed experimental explorations are undertaken of the dynamic performance characteristics of the proposed transmitter. It is shown that, in comparison with previously reported self-seeded transmitters each employing a reflective mirror and a single electrical signal-driven RSOA, the proposed transmitter has a number of salient advantages including, considerably narrowed optical signal spectra, up to 16dB reduction in RINs of intensity-modulated optical signals, and residual intensity modulation crosstalk suppression as high as 10.7dB. The aforementioned features enable experimental demonstrations of real-time self-seeded 10Gb/s optical OFDM (OOFDM) transmitters. In particular, by making use of two low-cost RSOAs having their 3-dB modulation bandwidths as small as 1.125GHz, 10Gb/s over 25km adaptive OOFDM transmissions with power penalties of 0.6dB are experimentally achieved in the simple self-seeded IMDD PON systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang
Opt. Express 20(19) 21089-21100 (2012)

Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang
Opt. Express 18(8) 8556-8573 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
    [Crossref]
  2. N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  3. R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access Networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
    [Crossref]
  4. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [Crossref]
  5. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
    [Crossref]
  6. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
    [Crossref] [PubMed]
  7. Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (Los Angeles, 2012), Paper OW4B.3.
    [Crossref]
  8. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [Crossref]
  9. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [Crossref]
  10. L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
    [Crossref] [PubMed]
  11. T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
    [Crossref] [PubMed]
  12. Q. Deniel, F. Saliou, P. Chanclou, D. Erasme, and R. Brenot, “Up to 45km-long amplified self-seeded RSOA based external cavity for 2.5Gb/s WDM PON transmission,” Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Anaheim, 2013), Paper OW4D.2.
    [Crossref]
  13. Q. Deniel, F. Saliou, S. D. Le, P. Chanclou, D. Erasme, and R. Brenot, “Amplified RSOA self-tuning laser for WDM PON using saturated SOA for noise reduction and data cancellation,” European Conference on Optical Communication (ECOC), (London, 2013), Paper We1.F.5.
    [Crossref]
  14. L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
    [Crossref]
  15. X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
    [Crossref]
  16. S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
    [Crossref] [PubMed]
  17. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
    [Crossref] [PubMed]
  18. X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
    [Crossref]
  19. F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
    [Crossref]
  20. A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
    [Crossref]
  21. S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
    [Crossref]
  22. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [Crossref]
  23. J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [Crossref]
  24. X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
    [Crossref] [PubMed]
  25. Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
    [Crossref] [PubMed]

2014 (2)

R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access Networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
[Crossref]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

2013 (2)

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

2012 (7)

X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
[Crossref]

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
[Crossref]

N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[Crossref]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
[Crossref] [PubMed]

2011 (3)

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

2010 (3)

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

2007 (1)

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

2006 (1)

J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

2004 (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

2001 (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[Crossref]

1975 (1)

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
[Crossref]

Anderson, T. B.

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

Babic, D.

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
[Crossref] [PubMed]

Barbet, S.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
[Crossref]

Bouma, B. E.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Brenot, R.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

Brunero, M.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

Chen, H.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Chung, Y. C.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Cvijetic, N.

N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[Crossref]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

de Valicourt, G.

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

Dúill, S. O.

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
[Crossref]

Freude, W.

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Galli, P.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

Gatto, A.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

Gavioli, G.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

Giacoumidis, E.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

Giddings, R.

R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access Networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
[Crossref]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Giddings, R. P.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

Girard, S. L.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Groenewald, J.

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Hong, Y.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

Hugues-Salas, E.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

Jia, X.-H.

X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
[Crossref]

Jin, X.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Jin, X. Q.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

Kim, H.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

Komljenovic, T.

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
[Crossref] [PubMed]

Koos, C.

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Lee, K. L.

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

Leuthold, J.

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Ling, Y.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Liu, D.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

Marazzi, L.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Martinelli, M.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

Oh, W.-Y.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Parolari, P.

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Piche, M.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

Quinlan, T.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[Crossref]

Schinn, G. W.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Shore, K. A.

J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

Sipus, Z.

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
[Crossref] [PubMed]

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Sverdlov, B. N.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
[Crossref]

Tang, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Tang, J. M.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[Crossref]

Walker, S.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Wang, M.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Wei, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Wei, J. L.

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Wong, E.

E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
[Crossref]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

Wu, Z.-M.

X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
[Crossref]

Xia, G.-Q.

X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
[Crossref]

Xiong, F.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

Xu, Z.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

Zhang, H. B.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Zhang, J. J.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Zhang, Q. W.

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

Zhong, W.-D.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

Zhu, M.

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 11(7), 510–515 (1975).
[Crossref]

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W.-Y. Oh, and B. E. Bouma, “SOA fiber ring lasers: single-versus multiple-mode oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (3)

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

L. Marazzi, P. Parolari, M. Brunero, A. Gatto, M. Martinelli, R. Brenot, S. Barbet, P. Galli, and G. Gavioli, “Up to 10.7-Gb/s High-PDG RSOA-based colorless transmitter for WDM networks,” IEEE Photon. Technol. Lett. 25(7), 637–640 (2013).
[Crossref]

IEEE Photonics Journal (1)

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

J. Lightwave Technol. (6)

F. Xiong, W.-D. Zhong, M. Zhu, H. Kim, Z. Xu, and D. Liu, “Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs,” J. Lightwave Technol. 31(11), 1727–1733 (2013).
[Crossref]

E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
[Crossref]

N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[Crossref]

R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access Networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
[Crossref]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

Opt. Express (7)

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
[Crossref] [PubMed]

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang, “Record-high and robust 17.125 Gb/s gross-rate over 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs,” Opt. Express 22(6), 6339–6348 (2014).
[Crossref] [PubMed]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[Crossref] [PubMed]

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

S. O. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

X.-H. Jia, Z.-M. Wu, and G.-Q. Xia, “Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs,” Opt. Laser Technol. 44(5), 1240–1246 (2012).
[Crossref]

Other (3)

Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (Los Angeles, 2012), Paper OW4B.3.
[Crossref]

Q. Deniel, F. Saliou, P. Chanclou, D. Erasme, and R. Brenot, “Up to 45km-long amplified self-seeded RSOA based external cavity for 2.5Gb/s WDM PON transmission,” Optical Fiber Communication /National Fiber Optic Engineers Conference (OFC/NFOEC), (Anaheim, 2013), Paper OW4D.2.
[Crossref]

Q. Deniel, F. Saliou, S. D. Le, P. Chanclou, D. Erasme, and R. Brenot, “Amplified RSOA self-tuning laser for WDM PON using saturated SOA for noise reduction and data cancellation,” European Conference on Optical Communication (ECOC), (London, 2013), Paper We1.F.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 OOFDM IMDD experimental system setup using the proposed dual-RSOA self-seeding scheme.
Fig. 2
Fig. 2 Measured output optical spectra of the dual-RSOA self-seeding scheme for different RSOA2 bias currents. The corresponding output optical spectrum of the mirror scheme is also shown together with the measured frequency response of the adopted OBPF. RSOA1 is biased at a fixed current of 80mA.
Fig. 3
Fig. 3 (a) Measured RIN spectra for both the dual-RSOA and mirror self-seeding schemes; (b) RSOA2 bias current-dependent RIN reduction for the dual-RSOA self-seeding scheme at representative frequencies. In measuring both (a) and (b), the RSOA1 bias current is fixed at 80mA.
Fig. 4
Fig. 4 (a) Comparisons of OOFDM signal waveforms before and after passing through RSOA2 biased at a DC current of 95mA; (b) Residual intensity modulation crosstalk suppression versus bias current of RSOA2.
Fig. 5
Fig. 5 (a) Adaptively loaded and received subcarrier power profiles and normalized system frequency response; (b) Adaptive subcarrier bit allocation profiles. In these two Figs, different transmission system configurations are considered including the 10Gb/s dual-RSOA scheme and the 3Gb/s mirror/dual-RSOA schemes.
Fig. 6
Fig. 6 (a) BER performances of 10Gb/s OOFDM IMDD transmissions in the dual-RSOA scheme-based self-seeded PON architectures: optical BTB and 25km SMF. (b) Corresponding received constellations of representative subcarriers before and after performing channel equalization after the 25km SMF transmission at a ROP of −3dBm. For both (a) and (b), RSOA1 and RSOA2 are biased at 80mA and 95mA, respectively.
Fig. 7
Fig. 7 (a) BER performances of 3Gb/s OOFDM signals based on the dual-RSOA and mirror schemes for the optical BTB and 25km SMF system configurations. RSOA1 and RSOA2 are biased at 80mA and 95mA, respectively; (b) Received constellations of different subcarriers after performing channel equalization for the 25km SMF transmission (ROP = −12dBm).

Tables (1)

Tables Icon

Table 1 OOFDM Transceiver and System Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

OM A OOFDM = i P(iΔT) | P(iΔT) P ¯ K 1 j P(jΔT) | P(jΔT) P ¯ K 2 ,
P ¯ = m=1 K 1 + K 2 P(mΔT) K 1 + K 2 ,
RCS(dB)=10log10( OM A OOFDM,in OM A OOFDM,out )

Metrics