Abstract

We fabricated one-dimensional periodic multilayered metamaterial structures consisting of Ag and SiO2 alternating layers. Optical responses, such as transmission and absorption, are consistent well within finite difference time domain (FDTD) simulations. Angle dependent real and imaginary dielectric permittivity reflection spectra demonstrate their operational capability in the visible wavelength region. This multilayer metamaterial can be converted into a photonic crystal by manipulating the thickness of SiO2 and we demonstrate that proper filling of SiO2/Ag layers the operating wavelength can be tuned to higher wavelength region. However, absolute value of transmission reduces with increasing number of multilayer pairs due to metal absorption.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of substrates on the nonlinear optical responses of two-dimensional materials

Jianhua Zeng, Jinxiang Li, Hui Li, Qiaofeng Dai, Shaolong Tie, and Sheng Lan
Opt. Express 23(25) 31817-31827 (2015)

Optical properties of Ag–TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques

Anass Dakka, Jacques Lafait, Claude Sella, Serge Berthier, Mohammed Abd-Lefdil, Jean-Claude Martin, and Malik Maaza
Appl. Opt. 39(16) 2745-2753 (2000)

Form birefringence of SiO2/Ta2O5 periodic multilayers

Masahiro Kitagawa and Mitsuhiro Tateda
Appl. Opt. 24(20) 3359-3362 (1985)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  3. L. Novotny, Principle of Nano-Optics (Cambridge University, 2006).
  4. A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109, 23371–23377 (2005).
    [Crossref] [PubMed]
  5. K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
    [Crossref]
  6. D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
    [Crossref] [PubMed]
  7. K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
    [Crossref] [PubMed]
  8. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001).
  9. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
    [Crossref]
  10. M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
    [Crossref]
  11. A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
    [Crossref]
  12. J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
    [Crossref]
  13. A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [Crossref]
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  15. G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
    [Crossref]
  16. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  17. A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for Vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  18. W. Wang, X. Chi, Y. Feng, and Y. Zhao, “Parallel FDTD simulation of photonic crystals and thin- film solar cells,” in 13th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) (2012), pp. 773–776.
  19. J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
    [Crossref]
  20. A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
    [Crossref]
  21. M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
    [Crossref] [PubMed]
  22. S. Feng, J. M. Elson, P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13(11), 4113–4124 (2005).
    [Crossref] [PubMed]
  23. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
    [Crossref]
  24. O. D. Coşkun, S. Demirela, “The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci. 277, 35–39 (2013).
    [Crossref]
  25. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
    [Crossref] [PubMed]
  26. J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).
  27. A. H. Aly, M. Ismaeel, “Comparative study of the one dimensional dielectric and metallic photonic crystals,” Opt. Photon. J. 2(2), 105–112 (2012).
    [Crossref]
  28. C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
    [Crossref]
  29. A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
    [Crossref]

2013 (1)

O. D. Coşkun, S. Demirela, “The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci. 277, 35–39 (2013).
[Crossref]

2012 (2)

A. H. Aly, M. Ismaeel, “Comparative study of the one dimensional dielectric and metallic photonic crystals,” Opt. Photon. J. 2(2), 105–112 (2012).
[Crossref]

G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

2011 (1)

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (2)

K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[Crossref]

2008 (1)

D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

2007 (2)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

2006 (1)

K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
[Crossref]

2005 (2)

A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109, 23371–23377 (2005).
[Crossref] [PubMed]

S. Feng, J. M. Elson, P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13(11), 4113–4124 (2005).
[Crossref] [PubMed]

2004 (3)

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
[Crossref]

1999 (1)

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

1998 (3)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for Vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

1996 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
[Crossref]

1995 (2)

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
[Crossref]

Altug, H.

A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[Crossref]

Aly, A. H.

A. H. Aly, M. Ismaeel, “Comparative study of the one dimensional dielectric and metallic photonic crystals,” Opt. Photon. J. 2(2), 105–112 (2012).
[Crossref]

Artar, A.

A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[Crossref]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

Belov, P. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Brioude, A.

A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109, 23371–23377 (2005).
[Crossref] [PubMed]

Bungay, C. L.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Christiansen, S.

K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
[Crossref] [PubMed]

Coskun, O. D.

O. D. Coşkun, S. Demirela, “The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci. 277, 35–39 (2013).
[Crossref]

Demirela, S.

O. D. Coşkun, S. Demirela, “The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci. 277, 35–39 (2013).
[Crossref]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Djurišic, A. B.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Elazar, J. M.

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

Elson, J. M.

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
[Crossref]

Feng, S.

Fischer, A. J.

G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Fu, R.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Gösele, U.

K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
[Crossref] [PubMed]

Herzinger, C. M.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Hilfiker, J.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Ho, K. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Höflich, K.

K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ismaeel, M.

A. H. Aly, M. Ismaeel, “Comparative study of the one dimensional dielectric and metallic photonic crystals,” Opt. Photon. J. 2(2), 105–112 (2012).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johs, B.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Kee, C. S.

C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
[Crossref]

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kim, K.

C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
[Crossref]

Kivshar, Y. S.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Lim, H.

C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
[Crossref]

Liu, X.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Liu, X. J.

D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Luk, T. S.

G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Majewski, M. L.

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Orlov, A. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Overfelt, P. L.

Pendry, J. B.

A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
[Crossref]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Pileni, M. P.

A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109, 23371–23377 (2005).
[Crossref] [PubMed]

Podolskiy, V. A.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

Rakic, A. D.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

Scalora, M.

M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Shen, Y.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Sigalas, M. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Soukoulis, C. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Stewart, W. J.

A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
[Crossref]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
[Crossref]

Subramania, G.

G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Synowicki, R.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
[Crossref]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

Ward, A. J.

A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
[Crossref]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
[Crossref]

Woollam, J. A.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Wu, D. J.

D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Xu, X. D.

D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Yanik, A. A.

A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[Crossref]

Yu, J.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
[Crossref]

Zhu, Z.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Zi, J.

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

G. Subramania, A. J. Fischer, T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

M. J. Bloemer, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[Crossref]

A. Artar, A. A. Yanik, H. Altug, “Fabry-Perot nanocavities in multilayerd plasmonic crystals for enhanced bio-sensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[Crossref]

Appl. Surf. Sci. (1)

O. D. Coşkun, S. Demirela, “The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci. 277, 35–39 (2013).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo- dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

J. Chem. Phys. (2)

D. J. Wu, X. D. Xu, X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

K. Höflich, U. Gösele, S. Christiansen, “Near-field investigations of nanoshell cylinder dimers,” J. Chem. Phys. 131(16), 164704 (2009).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. S. Kee, K. Kim, H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt. 6(1), 22–25 (2004).
[Crossref]

J. Phys. Chem. B (1)

A. Brioude, M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109, 23371–23377 (2005).
[Crossref] [PubMed]

J. Phys. Condens. Matter (2)

A. J. Ward, J. B. Pendry, W. J. Stewart, “Photonic dispersion surfaces,” J. Phys. Condens. Matter 7(10), 2217–2224 (1995).
[Crossref]

J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystal,” J. Phys. Condens. Matter 16(7), L51–L56 (2004).
[Crossref]

Nano Lett. (1)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Photon. J. (1)

A. H. Aly, M. Ismaeel, “Comparative study of the one dimensional dielectric and metallic photonic crystals,” Opt. Photon. J. 2(2), 105–112 (2012).
[Crossref]

Phys. Rev. B (3)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Large omnidirectional band gaps in metallodieelctric photonic crystal,” Phys. Rev. B 54(16), 11245–11251 (1996).
[Crossref]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011).
[Crossref]

A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Other (6)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

W. Wang, X. Chi, Y. Feng, and Y. Zhao, “Parallel FDTD simulation of photonic crystals and thin- film solar cells,” in 13th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) (2012), pp. 773–776.

S. A. Maier, Plasmonics: Fundamentals and Application (Springer, 2007).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

L. Novotny, Principle of Nano-Optics (Cambridge University, 2006).

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross-section field emission scanning electron microscope image of 5 pairs of Ag/SiO2 structures with a total thickness of ~350 nm with each pair approximately 70 nm thick consisting of ~15 nm Ag and ~55 nm SiO2 fabricated on top of a glass substrate.
Fig. 2
Fig. 2 XRR spectra of 5 pairs of Ag/SiO2 multilayer structure composed of ~15 nm Ag and ~55 nm SiO2 fabricated on top of a glass substrate.
Fig. 3
Fig. 3 Optical transmission response with corresponding absorption spectra at near normal incidence 5pairs of Ag/SiO2 multilayer structure consists of 15 nm Ag and 15 nm SiO2 (a) FDTD simulation (b) Experimental (c) angle dependent reflection spectra.
Fig. 4
Fig. 4 Optical transmission response with corresponding absorption spectra at near normal incidence for 8pairs of Ag/SiO2 multilayer structure consists of 20 nm Ag and 20 nm SiO2 (a) FDTD simulation (b) Experimental (c) angle dependent reflection spectra.
Fig. 5
Fig. 5 Optical transmission response with corresponding absorption spectra at near normal incidence 5pairs of Ag/SiO2 multilayer structure consists of 15 nm Ag and 25 nm SiO2 (a) FDTD simulation (b) Experimental (c) angle dependent reflection spectra.
Fig. 6
Fig. 6 Optical transmission response with corresponding absorption spectra at near normal incidence 5pairs Ag/SiO2 multilayer structure consists of 15 nm Ag and 30 nm SiO2 (a) FDTD simulation (b) Experimental (c) angle dependent reflection spectra.
Fig. 7
Fig. 7 Optical transmission response with corresponding absorption spectra at near normal incidence 5pairs of Ag/SiO2 multilayer structure consists of 15 nm Ag and 40 nm SiO2 (a) FDTD simulation (b) Experimental (c) angle dependent reflection spectra.
Fig. 8
Fig. 8 Optical transmission response with corresponding absorption spectra at near normal incidence 5 and 8 pairs of Ag/SiO2 multilayer structure consists of 15 nm Ag and 55 nm SiO2 (a) FDTD simulation of Absorption (b) Experimental Absorption (c) FDTD simulation of Transmission (d) Experimental Transmission.
Fig. 9
Fig. 9 Angle dependent reflection spectra of Ag/SiO2 multilayer structure consists of 15 nm Ag and 55 nm SiO2 (a) 5pairs (b) 8 pairs.
Fig. 10
Fig. 10 Real and imaginary permittivity of Ag/SiO2 multilayer structure (a) 15 nm Ag and 15 nm SiO2 for 5pairs (b) 20 nm Ag and 20 nm SiO2 for 8pairs (c) 15 nm Ag and 55 nm SiO2 for 5pairs.

Metrics