Abstract

Modeling a nanoparticle array (NPA) inside a thin glass slab as a lumped optical resonator, we propose a systematic approach to design for an efficient optical filter with bandwidth tunability. The quality factor and bandwidth of the resonator are related to the physical, geometrical, and electrical parameters of an NPA and its surrounding medium, whose permittivity is varied to change the bandwidth. We propose a structure amenable to our design approach consisting of an NPA slab surrounded by liquid crystal whose permittivity can be altered. We validate the design procedure with examples of tunable-bandwidth filters at different frequency regimes from NIR to blue.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoparticle array based optical frequency selective surfaces: theory and design

Chiya Saeidi and Daniel van der Weide
Opt. Express 21(13) 16170-16180 (2013)

Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating

Chang-Hyun Park, Yeo-Taek Yoon, Vivek Raj Shrestha, Chul-Soon Park, Sang-Shin Lee, and Eun-Soo Kim
Opt. Express 21(23) 28783-28793 (2013)

Optical spectrometer based on continuously-chirped guided mode resonance filter

Yung-Jr Hung, Chia-Wei Kao, Tzu-Chieh Kao, Chia-Wei Huang, Jia-Jin Lin, and Chuan-Ci Yin
Opt. Express 26(21) 27515-27527 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20, 23769–23777 (2012).
    [Crossref] [PubMed]
  2. K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).
  3. A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
    [Crossref]
  4. C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21, 28783–28793 (2013).
    [Crossref]
  5. Y. Lin, T. Zhai, Q. Ma, H. Liu, X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21, 11315–11321 (2013).
    [Crossref] [PubMed]
  6. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
    [Crossref]
  7. A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
    [Crossref]
  8. Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
    [Crossref]
  9. A. Alu, N. Engheta, in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
    [Crossref]
  10. K. Sarabandi, N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat. 55, 1239–1245 (2007).
    [Crossref]
  11. A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
    [Crossref]
  12. C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Optics Express 21, 16170–16180 (2013).
    [Crossref] [PubMed]
  13. C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design: errata,” Optics Express 21,24119 (2013).
    [Crossref]
  14. C. Saeidi, D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” App. Phys. Lett. 103,183101 (2013).
    [Crossref]

2013 (5)

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Optics Express 21, 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design: errata,” Optics Express 21,24119 (2013).
[Crossref]

C. Saeidi, D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” App. Phys. Lett. 103,183101 (2013).
[Crossref]

Y. Lin, T. Zhai, Q. Ma, H. Liu, X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21, 11315–11321 (2013).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21, 28783–28793 (2013).
[Crossref]

2012 (1)

2011 (2)

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
[Crossref]

A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
[Crossref]

2010 (3)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

2007 (1)

K. Sarabandi, N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat. 55, 1239–1245 (2007).
[Crossref]

Alu, A.

A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
[Crossref]

A. Alu, N. Engheta, in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[Crossref]

Behdad, N.

K. Sarabandi, N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat. 55, 1239–1245 (2007).
[Crossref]

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Chen, L.

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

Di Falco, A.

A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
[Crossref]

Engheta, N.

A. Alu, N. Engheta, in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[Crossref]

Gsele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Guo, L. J.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
[Crossref]

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
[Crossref]

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

Kim, E. S.

Knez, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

Lee, J. Y.

K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).

Lee, K. T.

K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).

Lee, S. S.

Lin, Y.

Liu, H.

Ma, Q.

Park, C. H.

Park, C. S.

Saeidi, C.

C. Saeidi, D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” App. Phys. Lett. 103,183101 (2013).
[Crossref]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Optics Express 21, 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design: errata,” Optics Express 21,24119 (2013).
[Crossref]

Sarabandi, K.

K. Sarabandi, N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat. 55, 1239–1245 (2007).
[Crossref]

Seo, S.

K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).

Shrestha, V. R.

Szeghalmi, A.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

van der Weide, D.

C. Saeidi, D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” App. Phys. Lett. 103,183101 (2013).
[Crossref]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design: errata,” Optics Express 21,24119 (2013).
[Crossref]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Optics Express 21, 16170–16180 (2013).
[Crossref] [PubMed]

Wu, Y. K.

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

Xu, T.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
[Crossref]

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

Ye, Y.

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

Yoon, Y. T.

Zhai, T.

Zhang, H.

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

Zhang, X.

Zhao, Y.

A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
[Crossref]

Zhou, Y.

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

Advanced Functional Materials (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gsele, M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Advanced Functional Materials 20, 2053–2062 (2010).
[Crossref]

App. Phys. Lett. (1)

C. Saeidi, D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” App. Phys. Lett. 103,183101 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. Di Falco, Y. Zhao, A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett. 99,163110 (2011).
[Crossref]

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99,143111 (2011).
[Crossref]

IEEE Trans. Antennas and Propagat. (1)

K. Sarabandi, N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat. 55, 1239–1245 (2007).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. F. Kaplan, T. Xu, Y. K. Wu, L. J. Guo, “Multilayer pattern transfer for plasmonic color filter applications,” J. Vac. Sci. Technol. B 28, C6060–C6063 (2010).
[Crossref]

Opt. Commun. (1)

Y. Ye, H. Zhang, Y. Zhou, L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[Crossref]

Opt. Express (3)

Optics Express (2)

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Optics Express 21, 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi, D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design: errata,” Optics Express 21,24119 (2013).
[Crossref]

Other (2)

K. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, “Angle-insensitive reflective color filters using lossy materials,” In IEEE Photonics Conf. (IPC)26–27 (2013).

A. Alu, N. Engheta, in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) NPA slab in a medium with wave impedance η, b) its equivalent circuit, and c) the circuit as viewed by LC tank.
Fig. 2
Fig. 2 Proposed configuration for bandwidth-tunable filter based on NPA.
Fig. 3
Fig. 3 Transmission and reflection coefficients for a) HeNe and b) Communication filters.
Fig. 4
Fig. 4 Transmission and reflection coefficients of the filter for visible.
Fig. 5
Fig. 5 Frequency response of the HeNe filter with oblique angle of incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω CPR = 1 LC = ω p ( ε b ε a ) ( 2.78 L a 3 V ) 2.78 a 3 ( ε h ( 1 L ) + ε a L ) + ( ε h ε a ) V
Q L = ω 0 L η | | η = 2 ω 0 L η
B W = η 0 2 ε ω C P R L 1 ε

Metrics