Abstract

We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes

Weina Han, Lan Jiang, Xiaowei Li, Pengjun Liu, Le Xu, and YongFeng Lu
Opt. Express 21(13) 15505-15513 (2013)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
    [Crossref] [PubMed]
  2. D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
    [Crossref]
  3. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
    [Crossref] [PubMed]
  4. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  5. J. Z. Li, S. Ho, M. Haque, and P. R. Herman, “Nanograting bragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express 2(11), 1562–1570 (2012).
    [Crossref]
  6. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  7. U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
    [Crossref]
  8. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
    [Crossref]
  9. M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  10. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  11. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
    [Crossref]
  12. S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
    [Crossref]
  13. C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
    [Crossref]
  14. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
    [Crossref] [PubMed]
  15. S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phys. Rev. Lett. 96(7), 073004 (2006).
    [Crossref] [PubMed]
  16. F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A. 103(18), 6793–6798 (2006).
    [Crossref] [PubMed]
  17. M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
    [Crossref] [PubMed]
  18. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).
  19. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
    [Crossref]
  20. L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
    [Crossref] [PubMed]
  21. J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
    [Crossref]
  22. M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
    [Crossref]
  23. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express 20(5), 5689–5695 (2012).
    [Crossref] [PubMed]
  24. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
    [Crossref]
  25. W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, and Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
    [Crossref] [PubMed]
  26. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  27. J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
    [Crossref]
  28. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
    [Crossref]
  29. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
    [Crossref]
  30. T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  31. T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
    [Crossref]
  32. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  33. Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, “Optical breakdown for silica and silicon with double femtosecond laser pulses,” Opt. Express 13(8), 3096–3103 (2005).
    [Crossref] [PubMed]
  34. C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
    [Crossref] [PubMed]
  35. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
    [Crossref] [PubMed]
  36. P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]

2013 (5)

2012 (7)

C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
[Crossref] [PubMed]

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
[Crossref] [PubMed]

J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express 20(5), 5689–5695 (2012).
[Crossref] [PubMed]

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

J. Z. Li, S. Ho, M. Haque, and P. R. Herman, “Nanograting bragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express 2(11), 1562–1570 (2012).
[Crossref]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

2011 (3)

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

2010 (1)

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

2009 (3)

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2008 (5)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

2007 (1)

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

2006 (2)

S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phys. Rev. Lett. 96(7), 073004 (2006).
[Crossref] [PubMed]

F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A. 103(18), 6793–6798 (2006).
[Crossref] [PubMed]

2005 (2)

2003 (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

2002 (1)

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

1999 (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Afshar, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Anastasiadis, S.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Aquila, A. L.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Arai, A.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Attwood, D. T.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Babu, M.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Bandach, S.

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Barberoglou, M.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Bovatsek, J.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Branz, H. M.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Bricchi, E.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Chakera, J. A.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Chakravarty, U.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Chang, W.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Chen, J. T.

Cheng, C. F.

Cheng, Y.

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Cho, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Collins, L. A.

S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phys. Rev. Lett. 96(7), 073004 (2006).
[Crossref] [PubMed]

Dai, Q. F.

Das, S. K.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Deng, Y. P.

Derrien, T. J. Y.

Diebold, E. D.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Doorn, S. K.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Duchateau, G.

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

Feili, D.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Fotakis, C.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Fukumori, Y.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Ganeev, R. A.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Gopal, A. V.

Goulielmakis, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Gray, D.

Grunwald, R.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Gullikson, E. M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Gupta, P. D.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Han, W. N.

Haque, M.

Hashimoto, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

Herman, P. R.

Hertel, I. V.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Hirao, K.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Ho, S.

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Hu, S. X.

S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phys. Rev. Lett. 96(7), 073004 (2006).
[Crossref] [PubMed]

Huang, M.

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Itina, T. E.

Jiang, L.

W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, and Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[Crossref] [PubMed]

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

Kao, Y. J.

Kautek, W.

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Kazansky, P. G.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Kim, J.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Kinoshita, K.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

König, K.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Krausz, F.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Lai, W. C.

Lamaignère, L.

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

Lan, S.

Leng, Y. X.

Lenzner, M.

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Levine, R. D.

F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A. 103(18), 6793–6798 (2006).
[Crossref] [PubMed]

Li, J. Z.

Li, R. X.

Li, X.

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

Li, X. W.

Liu, H. Y.

Liu, P. J.

Loukakos, P. A.

Lu, H. H.

Lu, Y. F.

Lysak, T. M.

Mack, N. H.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Magoulakis, E.

Matsuo, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

Mazur, E.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Meier, D. L.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Miura, K.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Na, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Naik, P. A.

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

Natoli, J. Y.

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

Page, M. R.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Quake, S. R.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Remacle, F.

F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A. 103(18), 6793–6798 (2006).
[Crossref] [PubMed]

Reyné, S.

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

Rohloff, M.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Scherer, A.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Seidel, H.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Sheu, J. K.

Shi, X. S.

Shimotsuma, Y.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Spanakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Stoian, R.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Stradins, P.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Stratakis, E.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Straub, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Tan, B.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Tomita, T.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

Trofimov, V. A.

Tsai, H. L.

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

Tzanetakis, P.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Venkatakrishnan, K.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Vipparty, D.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, C.

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

Wang, F.

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Whang, K.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Wu, L. J.

Xie, X. H.

Xiong, H.

Xu, L.

Xu, N.

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z. Z.

Yakovlev, V. S.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

Yang, W. J.

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yang, Y. Y.

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Yao, J. W.

Yost, V. E.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yuan, H.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yuan, Y. P.

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

Zhang, C. Y.

Zhao, F. L.

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zorba, V.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

ACS Nano (1)

M. Huang, F. L. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency,” Adv. Mater. 20(21), 4049–4054 (2008).
[Crossref]

Appl. Phys. Lett. (6)

P. G. Kazansky, W. J. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with adensity-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010).
[Crossref]

Appl. Phys., A (1)

J. Bonse, S. Bandach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A 74(1), 19–25 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

Appl. Surf. Sci. (1)

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278, 7–12 (2013).
[Crossref]

J. Appl. Phys. (5)

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys. 109(8), 084347 (2011).
[Crossref]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Langmuir (1)

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for Surface-Enhanced Raman Scattering,” Langmuir 25(3), 1790–1794 (2009).
[Crossref] [PubMed]

Opt. Express (8)

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express 20(5), 5689–5695 (2012).
[Crossref] [PubMed]

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang, and Y. F. Lu, “Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,” Opt. Express 20(19), 21505–21511 (2012).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Opt. Express 21, 29643–29655 (2013).
[Crossref]

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
[Crossref] [PubMed]

W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, and Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[Crossref] [PubMed]

Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, “Optical breakdown for silica and silicon with double femtosecond laser pulses,” Opt. Express 13(8), 3096–3103 (2005).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Lett. A (1)

C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A 375(36), 3200–3204 (2011).
[Crossref]

Phys. Rev. Lett. (2)

S. X. Hu and L. A. Collins, “Attosecond pump probe: exploring ultrafast electron motion inside an atom,” Phys. Rev. Lett. 96(7), 073004 (2006).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A. 103(18), 6793–6798 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (2)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[Crossref] [PubMed]

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup used for microprocessing with shaped fs laser pulse trains. HWP: half-wave plate; P: polarizer; WL: white-light source; BS: beam splitter; L1: convex lens; DM: dichroic mirror; L2: achromatic doublet.
Fig. 2
Fig. 2 Dimensions (major and minor axes of the LIPSS), ablated area (S), and the anisotropy parameter (K) (upper right-hand corner inset) of the LIPSS as a function of double-fs-pulse delay at an energy of 0.3 J/cm2. The number of irradiated laser pulses is 100 shots. The insets (a)-(e) show the SEM images at different time delays. All of the SEM images have the same scale bar.
Fig. 3
Fig. 3 (a)-(c) SEM images of multiple-shot ablated LIPSS fabricated by different directions of linearly polarized fs laser with single pulse per burst. The pulse energy and pulse number are 0.25 J/cm2 and 100, respectively. (d)-(f) and (g)-(i) SEM images of multiple-shot ablated LIPSS fabricated by double fs pulse under different polarization directions with the pulse delay of 300 fs and 600 fs, respectively; and the pulse energy and pulse number are identical with 0.3 J/cm2, and 100, respectively. All of the SEM images have the same scale bar.
Fig. 4
Fig. 4 (a)-(b) and (c)-(d) the mutually perpendicular scanning LIPSS lines fabricated by double fs pulse train with a pulse delay of 300 fs and 600 fs, respectively; the pulse energy and repetition rate are 0.3 J/cm2 and 250 Hz, respectively; (a), (c) with the scanning speed of 100 μm/s and (b), (d) with the scanning speed of 200 μm/s. The laser polarization directions in cases of 40°-polarization and 90°-polarization are indicated in (a)-(b) and (c)-(d), respectively.
Fig. 5
Fig. 5 Scanning time, with the scanning area of 1 × 0.6 mm2, shown as a function of the double fs pulse delay under 0° and 90°-polarization, respectively. The pulse energy, repetition rate, and scanning speed are fixed at 0.3 J/cm2, 250 Hz, and 100 μm/s, respectively. The inserts (a), (b) show the SEM images of the scanning LIPSS and the corresponding schematic diagram of the scanning technique.

Metrics