Abstract

The linewidth of a KGd(WO4)2 (KGW) intracavity pumped Raman laser is analyzed experimentally for different configurations of the Raman and pump laser resonators: with narrow and broadband pump emission profiles, with and without linewidth narrowing elements in the Raman laser resonator, with and without injection seeding into the Raman cavity. The benefits of a narrow linewidth pump source in combination with linewidth narrowing elements in the Raman laser cavity for the efficient linewidth narrowing of the Raman laser emission are explained. 20 kW peak-power pulses at 1156 nm with 0.43 cm−1 emission linewidth are demonstrated from an injection seeded KGW Raman laser.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser

A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov
Opt. Lett. 25(9) 616-618 (2000)

Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser

Xiao Qiang Gao, Ming Liang Long, and Chen Meng
Appl. Opt. 55(24) 6554-6558 (2016)

Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal

Shuanghong Ding, Xingyu Zhang, Qingpu Wang, Fufang Su, Shutao Li, Shuzhen Fan, Zhaojun Liu, Jun Chang, Sasa Zhang, Shumei Wang, and Yuru Liu
Opt. Express 13(25) 10120-10128 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Dakin and R. G. W. Brown, Handbook of optoelectronics, (Taylor & Francis, 2006).
  2. M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  3. G. L. Clark and E. D. Harris, High Power Laser Amplifier Chain Techniques (Defense Technical Information Center, 1965).
  4. R. Nicolaescu, E. S. Fry, and T. Walther, “Generation of near-Fourier-transform-limited high-energy pulses in a chain of fiber-bulk amplifiers,” Opt. Lett. 26(1), 13–15 (2001).
    [Crossref] [PubMed]
  5. Z. Renjie, S. Wei, E. Petersen, A. Chavez-Pirson, M. Stephen, and N. Peyghambarian, “Transform-limited, injection seeded, Q-switched, ring cavity fiber laser,” J. Lightwave Technol. 30(16), 2589–2595 (2012).
    [Crossref]
  6. E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. IRE50(11), 2367 (1962).
  7. J. C. White and D. Henderson, “Anti-Stokes Raman laser,” Phys. Rev. A 25(2), 1226–1229 (1982).
    [Crossref]
  8. J. N. Holliday, “Design of a XeF-pumped second Stokes amplifier for blue-green production in H2.,” Opt. Lett. 8(1), 12–14 (1983).
    [Crossref] [PubMed]
  9. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-µm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28(6), 426–428 (2003).
    [Crossref] [PubMed]
  10. V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, “Intracavity Raman laser generating a third stokes component at 1.5 μm,” J. Appl. Spectrosc. 76(5), 685–691 (2009).
    [Crossref]
  11. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
    [Crossref] [PubMed]
  12. V. I. Dashkevich and V. A. Orlovich, “Ring solid-state Raman laser at 1538 nm,” Laser Phys. Lett. 8(9), 661–667 (2011).
  13. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
    [Crossref] [PubMed]
  14. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
    [Crossref]
  15. G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
    [Crossref] [PubMed]
  16. K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
    [Crossref]
  17. P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
    [Crossref]
  18. N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
    [Crossref]
  19. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
    [Crossref]
  20. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30(18), 2454–2456 (2005).
    [Crossref] [PubMed]
  21. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
    [Crossref]
  22. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts, Applications (Springer-Verlag, 2005).
  23. L. E. Erickson and A. Szabo, “Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity,” Appl. Phys. Lett. 18(10), 433–435 (1971).
    [Crossref]
  24. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
    [Crossref]
  25. P. Bado, M. Bouvier, and J. S. Coe, “Nd:YLF mode-locked oscillator and regenerative amplifier,” Opt. Lett. 12(5), 319–321 (1987).
    [Crossref] [PubMed]
  26. P. A. Schulz and S. R. Henion, “5-GHz mode locking of a Nd:YLF laser,” Opt. Lett. 16(19), 1502–1504 (1991).
    [Crossref] [PubMed]
  27. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [Crossref]
  28. A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
    [Crossref]
  29. C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182(2), 482–494 (1969).
    [Crossref]
  30. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
    [Crossref]
  31. V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).
  32. L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [Crossref] [PubMed]
  33. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

2012 (2)

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Z. Renjie, S. Wei, E. Petersen, A. Chavez-Pirson, M. Stephen, and N. Peyghambarian, “Transform-limited, injection seeded, Q-switched, ring cavity fiber laser,” J. Lightwave Technol. 30(16), 2589–2595 (2012).
[Crossref]

2011 (2)

2009 (3)

2007 (2)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

2005 (1)

2003 (1)

2001 (2)

R. Nicolaescu, E. S. Fry, and T. Walther, “Generation of near-Fourier-transform-limited high-energy pulses in a chain of fiber-bulk amplifiers,” Opt. Lett. 26(1), 13–15 (2001).
[Crossref] [PubMed]

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1999 (2)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

1991 (1)

1989 (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

1987 (1)

1983 (1)

1982 (1)

J. C. White and D. Henderson, “Anti-Stokes Raman laser,” Phys. Rev. A 25(2), 1226–1229 (1982).
[Crossref]

1981 (1)

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[Crossref]

1975 (1)

N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
[Crossref]

1971 (1)

L. E. Erickson and A. Szabo, “Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity,” Appl. Phys. Lett. 18(10), 433–435 (1971).
[Crossref]

1969 (2)

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182(2), 482–494 (1969).
[Crossref]

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Ackerhalt, J. R.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Amann, M.-C.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bado, P.

Band, Y. B.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Basiev, T. T.

Bonner, G. M.

Bosch, T. M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bouvier, M.

Burns, D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[Crossref] [PubMed]

Chavez-Pirson, A.

Chen, Z.

Chirkov, V. A.

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

Coe, J. S.

Dashkevich, V. I.

V. I. Dashkevich and V. A. Orlovich, “Ring solid-state Raman laser at 1538 nm,” Laser Phys. Lett. 8(9), 661–667 (2011).

V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, “Intracavity Raman laser generating a third stokes component at 1.5 μm,” J. Appl. Spectrosc. 76(5), 685–691 (2009).
[Crossref]

Dawson, M. D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[Crossref] [PubMed]

Dekker, P.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

Duan, Y.

Eichler, H. J.

Erickson, L. E.

L. E. Erickson and A. Szabo, “Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity,” Appl. Phys. Lett. 18(10), 433–435 (1971).
[Crossref]

Fan, L.

Fan, Y.-X.

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[Crossref] [PubMed]

Fry, E. S.

Gad, G. M. A.

Geoghegan, S. L.

Gorelik, V. S.

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

Hastie, J. E.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[Crossref] [PubMed]

Heller, D. F.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Henderson, D.

J. C. White and D. Henderson, “Anti-Stokes Raman laser,” Phys. Rev. A 25(2), 1226–1229 (1982).
[Crossref]

Henion, S. R.

Holliday, J. N.

Huang, C.

Huang, L.

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[Crossref]

Kaminskii, A. A.

Kemp, A. J.

Kisel, V. E.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Kondratuk, N. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Krasinski, J. S.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Kravtsov, N. V.

N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
[Crossref]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Kuleshov, N. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[Crossref]

Lescure, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Li, Y.-Q.

Lin, J.

Loiko, P. A.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Lubeigt, W.

Molotkov, D. D.

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

Myllylae, R. A.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Naumkin, N. I.

N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
[Crossref]

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. IRE50(11), 2367 (1962).

Nicolaescu, R.

Orlovich, V. A.

V. I. Dashkevich and V. A. Orlovich, “Ring solid-state Raman laser at 1538 nm,” Laser Phys. Lett. 8(9), 661–667 (2011).

V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, “Intracavity Raman laser generating a third stokes component at 1.5 μm,” J. Appl. Spectrosc. 76(5), 685–691 (2009).
[Crossref]

Osiko, V. V.

Pask, H. M.

Pavlyuk, A. A.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[Crossref]

Peregudov, G. V.

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

Petersen, E.

Peyghambarian, N.

Powell, R. C.

Protasenya, A. L.

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Protasov, V. P.

N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
[Crossref]

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Raymer, M. G.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

Renjie, Z.

Rioux, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Savitski, V. G.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[Crossref] [PubMed]

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Schulz, P. A.

Shen, H.

Shkadarevich, A. P.

V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, “Intracavity Raman laser generating a third stokes component at 1.5 μm,” J. Appl. Spectrosc. 76(5), 685–691 (2009).
[Crossref]

Sobol, A. A.

Spence, D. J.

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

Stephen, M.

Sushchinskii, M. M.

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

Szabo, A.

L. E. Erickson and A. Szabo, “Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity,” Appl. Phys. Lett. 18(10), 433–435 (1971).
[Crossref]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Walther, T.

Wang, C.-S.

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182(2), 482–494 (1969).
[Crossref]

Wang, H.-T.

Wang, J.

Wang, Q.

Wei, S.

Wei, Y.

White, J. C.

J. C. White and D. Henderson, “Anti-Stokes Raman laser,” Phys. Rev. A 25(2), 1226–1229 (1982).
[Crossref]

Woodbury, E. J.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. IRE50(11), 2367 (1962).

Yumashev, K. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Zhang, G.

Zhang, H.

Zheng, Y.

Zhu, H.

Zverev, P. G.

Appl. Opt. (1)

Appl. Phys. B (1)

K. V. Yumashev, V. G. Savitski, N. V. Kuleshov, A. A. Pavlyuk, D. D. Molotkov, and A. L. Protasenya, “Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates,” Appl. Phys. B 89(1), 39–43 (2007).
[Crossref]

Appl. Phys. Lett. (1)

L. E. Erickson and A. Szabo, “Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity,” Appl. Phys. Lett. 18(10), 433–435 (1971).
[Crossref]

IEEE J. Quantum Electron. (3)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

J. Appl. Spectrosc. (1)

V. I. Dashkevich, V. A. Orlovich, and A. P. Shkadarevich, “Intracavity Raman laser generating a third stokes component at 1.5 μm,” J. Appl. Spectrosc. 76(5), 685–691 (2009).
[Crossref]

J. Lightwave Technol. (1)

JETP Lett. (1)

V. A. Chirkov, V. S. Gorelik, G. V. Peregudov, and M. M. Sushchinskii, “Investigation of the line width of stimulated Raman scattering,” JETP Lett. 10(9), 267–269 (1969).

Laser Phys. Lett. (1)

V. I. Dashkevich and V. A. Orlovich, “Ring solid-state Raman laser at 1538 nm,” Laser Phys. Lett. 8(9), 661–667 (2011).

Nature (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Opt. Mater. (1)

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Phys. Rev. (1)

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182(2), 482–494 (1969).
[Crossref]

Phys. Rev. A (2)

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

J. C. White and D. Henderson, “Anti-Stokes Raman laser,” Phys. Rev. A 25(2), 1226–1229 (1982).
[Crossref]

Prog. Quantum Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High-intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[Crossref]

Sov. J. Quantum Electron. (1)

N. V. Kravtsov, N. I. Naumkin, and V. P. Protasov, “Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses,” Sov. J. Quantum Electron. 5(7), 864–865 (1975).
[Crossref]

Other (4)

J. Dakin and R. G. W. Brown, Handbook of optoelectronics, (Taylor & Francis, 2006).

G. L. Clark and E. D. Harris, High Power Laser Amplifier Chain Techniques (Defense Technical Information Center, 1965).

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. IRE50(11), 2367 (1962).

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts, Applications (Springer-Verlag, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The KGW Raman laser set-up. M1: HR@1047 nm, ROC = 500 mm; M2: plane, HR@1047 nm or VBG; M3: R@1156 nm 81%, ROC = 200 mm; M4: HR@1156 nm, ROC = 250 mm; DM: HR@1156 nm, HT@1047 nm; FP: Fabry-Perot etalon. (b) Calculated double-pass transmittance (T2) of the FP as a function of wavelength at the angle of incidence of 7°.
Fig. 2
Fig. 2 Output energies of fundamental (1047 nm) and Raman (1156 nm) lasers as a function of Q-switching frequency.
Fig. 3
Fig. 3 Raman laser output power (a) and linewidths of theRaman laser emission (b) as functions of diode incident pump power for different cavity configurations.
Fig. 4
Fig. 4 Linewidths of fundamental and Raman laser emissions as function of incident diode pump power for different cavity configurations.
Fig. 5
Fig. 5 (a) Fundamental and (b) Raman lasers wavelengths as functions of incident diode pump power for the different cavity configurations.

Metrics