A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110, 183901 (2013).

[Crossref]
[PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[Crossref]

A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010).

[Crossref]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

H. Ajiki and H. Ishihara, “Entangled-photon generation from a quantum dot in cavity QED,” Phys. Stat. Solidi C 6, 276–279 (2009).

[Crossref]

H. Ajiki, H. Ishihara, and K. Edamatsu, “Cavity-assisted generation of entangled photons from a V-type three-level system,” New J. Phys. 11, 033033 (2009).

[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express 16, 4507–4519 (2008).

[Crossref]
[PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).

[Crossref]
[PubMed]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

T. Yoshie, A. Scherer, and J. Hendrickson, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

H. Ajiki and K. Cho, “Longitudinal and transverse components of excitons in a spherical quantum dot,” Phys. Rev. B 62, 7402–7412 (2000).

[Crossref]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756 (1999).

[Crossref]

S. Rudin and T. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227 (1999).

[Crossref]

K. Cho and M. Kawata, “Theoretical analysis of polariton interference in a thin platelet of CuCl. I-Additional boundary condition,” J. Phys. Soc. Jpn. 54, 4431–4443 (1985).

[Crossref]

M. Kalm and C. Uihlein, “Investigations on the temperature-dependent TPA linewidth of the Z3-exciton in CuCl,” Phys. Stat. Solidi B 87, 575 (1978).

[Crossref]

S. I. Pekar, “The theory of electromagnetic waves in a crystal in which excitons are produced,” Sov. Phys. JETP 6, 785–796 (1958).

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

M. Uemoto and H. Ajiki, “Simulation method for resonant light scattering of exciton confined to arbitrary geometry,” Opt. Express 22, 9450–9464 (2014).

[Crossref]
[PubMed]

K. Shibata and H. Ajiki, “Entangled-photon generation from a quantum dot in a microcavity through pulsed laser irradiation,” Phys. Rev. A 89, 042319 (2014).

[Crossref]

H. Ajiki and H. Ishihara, “Entangled-photon generation from a quantum dot in cavity QED,” Phys. Stat. Solidi C 6, 276–279 (2009).

[Crossref]

H. Ajiki, H. Ishihara, and K. Edamatsu, “Cavity-assisted generation of entangled photons from a V-type three-level system,” New J. Phys. 11, 033033 (2009).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

H. Ajiki and K. Cho, “Longitudinal and transverse components of excitons in a spherical quantum dot,” Phys. Rev. B 62, 7402–7412 (2000).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756 (1999).

[Crossref]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

H. Ajiki and K. Cho, “Longitudinal and transverse components of excitons in a spherical quantum dot,” Phys. Rev. B 62, 7402–7412 (2000).

[Crossref]

K. Cho and M. Kawata, “Theoretical analysis of polariton interference in a thin platelet of CuCl. I-Additional boundary condition,” J. Phys. Soc. Jpn. 54, 4431–4443 (1985).

[Crossref]

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, 2010).

[Crossref]

H. Ajiki, H. Ishihara, and K. Edamatsu, “Cavity-assisted generation of entangled photons from a V-type three-level system,” New J. Phys. 11, 033033 (2009).

[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110, 183901 (2013).

[Crossref]
[PubMed]

A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010).

[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

T. Yoshie, A. Scherer, and J. Hendrickson, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

H. Ajiki, H. Ishihara, and K. Edamatsu, “Cavity-assisted generation of entangled photons from a V-type three-level system,” New J. Phys. 11, 033033 (2009).

[Crossref]

H. Ajiki and H. Ishihara, “Entangled-photon generation from a quantum dot in cavity QED,” Phys. Stat. Solidi C 6, 276–279 (2009).

[Crossref]

M. Kalm and C. Uihlein, “Investigations on the temperature-dependent TPA linewidth of the Z3-exciton in CuCl,” Phys. Stat. Solidi B 87, 575 (1978).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

K. Cho and M. Kawata, “Theoretical analysis of polariton interference in a thin platelet of CuCl. I-Additional boundary condition,” J. Phys. Soc. Jpn. 54, 4431–4443 (1985).

[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010).

[Crossref]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, 2010).

[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[Crossref]

S. I. Pekar, “The theory of electromagnetic waves in a crystal in which excitons are produced,” Sov. Phys. JETP 6, 785–796 (1958).

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110, 183901 (2013).

[Crossref]
[PubMed]

S. Rudin and T. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227 (1999).

[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

S. Rudin and T. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227 (1999).

[Crossref]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

T. Yoshie, A. Scherer, and J. Hendrickson, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).

[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).

[Crossref]
[PubMed]

K. Shibata and H. Ajiki, “Entangled-photon generation from a quantum dot in a microcavity through pulsed laser irradiation,” Phys. Rev. A 89, 042319 (2014).

[Crossref]

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110, 183901 (2013).

[Crossref]
[PubMed]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

M. Kalm and C. Uihlein, “Investigations on the temperature-dependent TPA linewidth of the Z3-exciton in CuCl,” Phys. Stat. Solidi B 87, 575 (1978).

[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[Crossref]

A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010).

[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).

[Crossref]
[PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756 (1999).

[Crossref]

T. Yoshie, A. Scherer, and J. Hendrickson, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).

[Crossref]

S. Savasta, R. Saija, A. Ridolfo, and O. D. Stefano, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).

[Crossref]
[PubMed]

K. Cho and M. Kawata, “Theoretical analysis of polariton interference in a thin platelet of CuCl. I-Additional boundary condition,” J. Phys. Soc. Jpn. 54, 4431–4443 (1985).

[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).

[Crossref]
[PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).

[Crossref]

G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).

[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).

[Crossref]
[PubMed]

T. Yoshie, A. Scherer, and J. Hendrickson, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).

[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007).

[Crossref]
[PubMed]

H. Ajiki, H. Ishihara, and K. Edamatsu, “Cavity-assisted generation of entangled photons from a V-type three-level system,” New J. Phys. 11, 033033 (2009).

[Crossref]

Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express 16, 4507–4519 (2008).

[Crossref]
[PubMed]

M. Uemoto and H. Ajiki, “Simulation method for resonant light scattering of exciton confined to arbitrary geometry,” Opt. Express 22, 9450–9464 (2014).

[Crossref]
[PubMed]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010).

[Crossref]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756 (1999).

[Crossref]

K. Shibata and H. Ajiki, “Entangled-photon generation from a quantum dot in a microcavity through pulsed laser irradiation,” Phys. Rev. A 89, 042319 (2014).

[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[Crossref]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).

[Crossref]

S. Rudin and T. Reinecke, “Oscillator model for vacuum Rabi splitting in microcavities,” Phys. Rev. B 59, 10227 (1999).

[Crossref]

H. Ajiki and K. Cho, “Longitudinal and transverse components of excitons in a spherical quantum dot,” Phys. Rev. B 62, 7402–7412 (2000).

[Crossref]

E. Peter, P. Senellart, D. Martrou, a. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).

[Crossref]
[PubMed]

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110, 183901 (2013).

[Crossref]
[PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).

[Crossref]
[PubMed]

M. Kalm and C. Uihlein, “Investigations on the temperature-dependent TPA linewidth of the Z3-exciton in CuCl,” Phys. Stat. Solidi B 87, 575 (1978).

[Crossref]

H. Ajiki and H. Ishihara, “Entangled-photon generation from a quantum dot in cavity QED,” Phys. Stat. Solidi C 6, 276–279 (2009).

[Crossref]

S. I. Pekar, “The theory of electromagnetic waves in a crystal in which excitons are produced,” Sov. Phys. JETP 6, 785–796 (1958).

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, 2010).

[Crossref]

The complex eigenfrequency, whose imaginary part represents the spectral width, of the coupled states are given by Ω±=ω0−i(γcav+γ0)/4±g2−(γcav−γ0)2/16 at the zero detuning where the cavity-mode frequency agrees with that of material excitation. Although two real parts of Ω± appear for g > (γcav − γ0)/4, the splitting energy should be larger than the spectral width, i.e., g > (γcav + γ0)/4 for observing an evident energy splitting [14].