Abstract

We propose a novel hollow core fiber design based on nested and non-touching antiresonant tube elements arranged around a central core. We demonstrate through numerical simulations that such a design can achieve considerably lower loss than other state-of-the-art hollow fibers. By adding additional pairs of coherently reflecting surfaces without introducing nodes, the Hollow Core Nested Antiresonant Nodeless Fiber (HC-NANF) can achieve values of confinement loss similar or lower than that of its already low surface scattering loss, while maintaining multiple and octave-wide antiresonant windows of operation. As a result, the HC-NANF can in principle reach a total value of loss – including leakage, surface scattering and bend contributions – that is lower than that of conventional solid fibers. Besides, through resonant out-coupling of high order modes they can be made to behave as effectively single mode fibers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband high birefringence and polarizing hollow core antiresonant fibers

Seyedmohammad Abokhamis Mousavi, Seyed Reza Sandoghchi, David J. Richardson, and Francesco Poletti
Opt. Express 24(20) 22943-22958 (2016)

Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 23(13) 17394-17406 (2015)

Dual-core antiresonant hollow core fibers

Xuesong Liu, Zhongwei Fan, Zhaohui Shi, Yunfeng Ma, Jin Yu, and Jing Zhang
Opt. Express 24(15) 17453-17458 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
    [Crossref]
  2. E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  3. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt 19(3), 211–227 (2000).
    [Crossref]
  4. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [Crossref] [PubMed]
  5. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
    [Crossref]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  7. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  8. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [Crossref] [PubMed]
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  10. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  11. Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. Petrovich, and D. J. Richardson, “Understanding Wavelength Scaling in 19-Cell Core Hollow-Core Photonic Bandgap Fibers,” in Proc. Optical Fiber Communication Conference (OFC) 2014, paper M2F.4.
    [Crossref]
  12. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
    [Crossref] [PubMed]
  13. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  14. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  15. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref]
  16. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  17. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
    [Crossref] [PubMed]
  18. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  19. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  20. F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” in Proc. European Conference on Optical Communication (ECOC) 2011, paper Mo.2.LeCervin.2.
    [Crossref]
  21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  22. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  23. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  24. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
    [Crossref]
  25. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15(2), 236–238 (2003).
    [Crossref]
  26. F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35(17), 2837–2839 (2010).
    [Crossref] [PubMed]
  27. J. Jackle and K. Kawasaki, “Intrinsic Roughness of Glass Surfaces,” J. Phys. Condens. Matter 7(23), 4351–4358 (1995).
    [Crossref]
  28. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [Crossref] [PubMed]
  29. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [Crossref] [PubMed]
  30. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12(15), 3500–3508 (2004).
    [Crossref] [PubMed]
  31. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref] [PubMed]
  32. F. Poletti and E. Fokoua, “Understanding the Physical Origin of Surface Modes and Practical Rules for their Suppression,” in Proc. ECOC 2013, paper Tu.3.A.4.
    [Crossref]
  33. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
    [Crossref] [PubMed]
  34. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
    [Crossref]
  35. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
    [Crossref]
  36. E. R. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “Accurate Loss and surface mode modeling in Fabricated Hollow-core Photonic Bandgap Fibers,” in Proc. Optical Fiber Communication Conference (OFC) 2014, paper M2F.5.
    [Crossref]
  37. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
    [Crossref] [PubMed]
  38. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  39. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
    [Crossref]
  40. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 20(7), 1221–1229 (1981).
    [Crossref] [PubMed]
  41. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
    [Crossref]
  42. V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
    [Crossref]
  43. M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  44. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  45. A. B. Sharma, A. H. Al-Ani, and S. J. Halme, “Constant-Curvature Loss in Monomode Fibers: an Experimental Investigation,” Appl. Opt. 23(19), 3297–3301 (1984).
    [Crossref] [PubMed]
  46. Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Proc. Optical Fiber Communication Conference (OFC) 2013, paper PDP5A.3.
    [Crossref]
  47. M. N. Petrovich, F. Poletti, A. Van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
    [Crossref] [PubMed]
  48. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  49. J. M. Pottage, D. M. Bird, T. D. Hedley, J. Knight, T. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
    [Crossref] [PubMed]
  50. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  51. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express 17(26), 23468–23473 (2009).
    [Crossref] [PubMed]

2014 (4)

2013 (6)

2012 (3)

2011 (3)

2010 (4)

2009 (1)

2008 (1)

2007 (3)

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
[Crossref] [PubMed]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (2)

2003 (2)

2002 (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

2001 (2)

2000 (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt 19(3), 211–227 (2000).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1995 (2)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

J. Jackle and K. Kawasaki, “Intrinsic Roughness of Glass Surfaces,” J. Phys. Condens. Matter 7(23), 4351–4358 (1995).
[Crossref]

1984 (1)

1981 (1)

1978 (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

1977 (1)

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

1964 (1)

E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Alam, S.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Al-Ani, A. H.

Alharbi, M.

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Auguste, J. L.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Baddela, N.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Baddela, N. K.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Beaudou, B.

Belardi, W.

Benabid, F.

Bierlich, J.

Bird, D. M.

Biriukov, A. S.

Birks, T.

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Bjarklev, A.

Blondy, J. M.

Borrelli, N. F.

Boyd, R.

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

Bradley, T.

Broeng, J.

Bubnov, M. M.

Chigusa, Y.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Cohen, W.

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

de Waardt, H.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Debord, B.

Desantolo, A.

Deyerl, H. J.

Dianov, E. M.

DiMarcello, F. V.

Doran, W.

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

Engeness, T. D.

Farr, L.

Février, S.

Fini, J. M.

Fink, Y.

Fokoua, E. N.

Fourcade-Dutin, C.

Frosch, T.

Gérôme, F.

Gray, D.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Guryanov, A. N.

Halme, S. J.

Hansen, T.

Harrington, J. A.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt 19(3), 211–227 (2000).
[Crossref]

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hartung, A.

Hayes, J.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Hayes, J. R.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Hedley, T. D.

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heidt, A. M.

Huang, Y.

Humbert, G.

Ibanescu, M.

Jackle, J.

J. Jackle and K. Kawasaki, “Intrinsic Roughness of Glass Surfaces,” J. Phys. Condens. Matter 7(23), 4351–4358 (1995).
[Crossref]

Jacobs, S. A.

Jakobsen, C.

Jamier, R.

Jensen, J.

Joannopoulos, J. D.

Johnson, S. G.

Jonasz, M.

Jung, Y.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Kakui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Kawasaki, K.

J. Jackle and K. Kawasaki, “Intrinsic Roughness of Glass Surfaces,” J. Phys. Condens. Matter 7(23), 4351–4358 (1995).
[Crossref]

Khopin, V. F.

Kitamura, R.

Knight, J.

Knight, J. C.

Kobelke, J.

Koch, K. W.

Kolyadin, A. N.

Koshiba, M.

Kosolapov, A. F.

Kuschnerov, M.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Lee, R.

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Likhachev, M. E.

Lyngsø, J. K.

Mangan, B.

Mangan, B. J.

Marcatili, E. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marom, E.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

Mason, M. W.

Matsui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Meng, L. L.

Miyagi, M.

Monberg, E. M.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Mortensen, N.

Nagayama, K.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Nicholson, J. W.

Numkam Fokoua, E.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Parmigiani, F.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Petrovich, M.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Petrovich, M. N.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, A. Van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Pilon, L.

Plotnichenko, V. G.

Poletti, F.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref] [PubMed]

F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35(17), 2837–2839 (2010).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, A. Van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Popp, J.

Pottage, J. M.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Richardson, D.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Richardson, D. J.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express 17(26), 23468–23473 (2009).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[Crossref] [PubMed]

J. M. Pottage, D. M. Bird, T. D. Hedley, J. Knight, T. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Russell, P. S.

Russell, P. S. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Sabert, H.

Saitoh, K.

Saitoh, T.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Salganskii, M. Y.

Sandoghchi, S. R.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Schmeltzer, R. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

Schwuchow, A.

Semjonov, S. L.

Setti, V.

Sharma, A. B.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Simonsen, H.

Skorobogatiy, M.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Sleiffer, V.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Smith, C. M.

Soljacic, M.

Sorensen, T.

St J Russell, P.

Surof, J.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Terrel, M.

Tomlinson, A.

Tuminaro, R.

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

Van Brakel, A.

Veljanovski, V.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Viale, P.

Vienne, G.

Vincetti, L.

Wadsworth, W. J.

Wang, Y. Y.

Weisberg, O.

West, J. A.

Wheeler, N.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Windeler, R. S.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Wondraczek, K.

Wong, N.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Wooler, J.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Xu, Y.

Yariv, A.

Yeh, P.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

Yu, F.

Appl. Opt. (3)

Bell Syst. Tech. J. (2)

R. Boyd, W. Cohen, W. Doran, and R. Tuminaro, “WT4 Millimeter Waveguide System: Waveguide Design and Fabrication,” Bell Syst. Tech. J. 56(10), 1873–1897 (1977).
[Crossref]

E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Electron. Lett. (2)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Fiber Integrated Opt (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt 19(3), 211–227 (2000).
[Crossref]

IEEE Commun. Mag. (1)

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing Optical Communications with Brand New Fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15(2), 236–238 (2003).
[Crossref]

J. Lightwave Technol. (2)

K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

J. Phys. Condens. Matter (1)

J. Jackle and K. Kawasaki, “Intrinsic Roughness of Glass Surfaces,” J. Phys. Condens. Matter 7(23), 4351–4358 (1995).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (19)

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12(15), 3500–3508 (2004).
[Crossref] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

J. M. Pottage, D. M. Bird, T. D. Hedley, J. Knight, T. Birks, P. S. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11(22), 2854–2861 (2003).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express 17(26), 23468–23473 (2009).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, A. Van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Opt. Lett. (6)

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (5)

Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. Petrovich, and D. J. Richardson, “Understanding Wavelength Scaling in 19-Cell Core Hollow-Core Photonic Bandgap Fibers,” in Proc. Optical Fiber Communication Conference (OFC) 2014, paper M2F.4.
[Crossref]

F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” in Proc. European Conference on Optical Communication (ECOC) 2011, paper Mo.2.LeCervin.2.
[Crossref]

F. Poletti and E. Fokoua, “Understanding the Physical Origin of Surface Modes and Practical Rules for their Suppression,” in Proc. ECOC 2013, paper Tu.3.A.4.
[Crossref]

E. R. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “Accurate Loss and surface mode modeling in Fabricated Hollow-core Photonic Bandgap Fibers,” in Proc. Optical Fiber Communication Conference (OFC) 2014, paper M2F.5.
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Proc. Optical Fiber Communication Conference (OFC) 2013, paper PDP5A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Scanning Electron Micrographs (SEMs) of some representative hollow core fibers: (a) PBGF [17]; (b-h) ARFs. In particular, (b [18],) and (d [19],) have a Kagome cladding and straight vs hypocycloid core surround, respectively; (c [20],) and (h [15]) are simplified anti-resonant fibers with a hexagram and a double antiresonant cladding, respectively; (e [21],), (f [16],) are simplified hollow core fibers with ‘negative curvature’ core surround, like also (g [22],), which however presents a cross-section without nodes and will be referred to, in the text, as antiresonant nodeless tube-lattice fiber (ANF).
Fig. 2
Fig. 2 Loss comparison: A. ARF (hexagram fiber [20]); B. PBGF [10]; C. record low loss SSIF [34]. The solid lines are measured losses; dotted and dashed lines are simulated CL and SSL, respectively. Note how in a ARF the loss is dominated by CL while in a PBGF SSL is the dominant loss mechanism.
Fig. 3
Fig. 3 Comparison between antiresonant nodeless fiber (ANF), (top) and the version with nested elements (NANF) proposed in this work (bottom): (a) structure; (b) 3-dB contour plots and (c) cross-sectional profile of the fundamental mode’s z-Poynting vector, showing how the addition of the nested ring decreases the field on the outer cladding from 6 to over 8 orders of magnitude below its maximum value.
Fig. 4
Fig. 4 Confinement loss comparison between 6 different ARFs: hexagram (black); Kagome with negative curvature core (orange); idealized Bragg (red); tube lattice fiber (green), ANF (cyan); NANF (blue). All fibers have the same core diameter R = 15 µm and uniform strut thickness t = 0.42 µm. The dashed line indicates the SSL for the ANF, identical to that of the NANF.
Fig. 5
Fig. 5 Simulated dependence of the loss contributions of a typical NANF on (a) wavelength at a fixed core radius, and (b) core radius at a fixed wavelength (λ = 1µm). For the CL an overall λ7/R8 dependence is observed while SSL goes approximately like 1/λR3.
Fig. 6
Fig. 6 Comparison between the measured loss of a typical ARF (hexagram fiber [20], D = 50 µm), a state-of-the-art wide bandwidth PBGF [10] with D = 26 µm, the record low-loss SSIF [34] and the simulated CL of NANFs with D = 2R = 26, 30, 40 and 50 µm, all having t = 0.55 µm, d/t = 5 and z/R = 0.9. The SSL of these fibers (not shown) is comparable to their CL.
Fig. 7
Fig. 7 Bend loss of NANF: (a) wavelength dependence for fundamental mode (solid lines) and lowest loss high order mode (dotted lines) of a D = 40 µm fiber; (b) dependence on the radius of curvature Rc for the 30, 40 and 50 µm diameter fibers of Fig. 6 at λ = 1.8 µm. The markers indicate the critical radius at which the loss doubles as compared to a straight fiber. All simulated fibers have t = 0.55 µm, d/t = 5 and z/R = 0.9.
Fig. 8
Fig. 8 Example of wavelength scaling. 7 NANFs with the same d/t = 5 and z/R = 0.9 are rigidly scaled from R = 7 um to R = 80 um such that R/t is conserved. Only the fundamental antiresonance window in shown. The solid lines represent CL, the dashed black lines SSL. The IR glass absorption loss for silica extracted from [47] is directly included in the simulations and is plotted in a dashed gray line with a pre-multiplication factor accounting for a modal overlap with glass, ζ.
Fig. 9
Fig. 9 Effect of antiresonant element separation d: (a) shows the spectral dependence of the CL of the 40 um NANF of Fig. 6 as d/t is changed from negative (nodes) to positive (no nodes); (b) shows a more detailed scan over d/t for a number of wavelengths. Values of d/t between 1 and 6 are found to give the best compromise between bandwidth and minimum loss.
Fig. 10
Fig. 10 Effect of nested element separation on the modal intensity. (b) shows the Ex-field along the blue line interconnecting the center of the tubes shown in (a), as a function of d/t. The red dashed line is the field at the intersection between red and blue lines in (a), which is somehow proportional to the leakage loss through the tubes and reaches a minimum for d/t in the range 1-3. The fibers are the same as in Fig. 9 and λ/t = 3.3.
Fig. 11
Fig. 11 Effect of changing the size of the inner nested tube in a NANF with a fixed R, t and d. When z is changed, the cladding modes (CM) shown on the right resonantly interact with different core modes (shown on the left). Operation around z/R ~0.25 or 1.1 enables maximum suppression of the lowest loss HOM (LP11), which can result in HOM extinction ratios in excess of 500.
Fig. 12
Fig. 12 Comparison between the CL of NANFs with 6, 8 and 10 nested elements but with the same R = 20 um, t = 0.55 um, d/t = 5. The SSL of all three fibers are identical and shown by the dashed black curve.
Fig. 13
Fig. 13 Loss comparison between NANFs with 1 and 2 nested elements in straight (solid lines) and bent (Rc = 3 cm, dot-dashed lines) configuration. All fibers have R = 15 µm, t = 0.42 µm and the same SSL, shown by the dashed black line. The additional nested element further lowers the CL and could be useful to improve bend performances of NANFs. A ANF with the same R and t is also shown for comparison.
Fig. 14
Fig. 14 Structural comparison between a 37 cell core PBGF optimized for ultra-low loss operation at 2 µm wavelengths with R = 50 μm (top) and a NANF providing similar loss with R = 40 μm (bottom). (a) shows 3-dB contour lines of the fundamental mode in both fibers when straight, while (b) shows the mode at a 3 cm bend, where the HC-BPGF is more effective at containing the mode inside the core.
Fig. 15
Fig. 15 Example of three NANFs operating at 1.06 µm in the first antiresonant band and with different MFD. Solid lines indicate the CL of straight fibers while dotted lines are for fibers coiled at a 2.5 cm diameter. A continuous tuning of the MFD is possible to match the output MFD of a solid active/passive fiber.

Tables (1)

Tables Icon

Table 1 Comparison between Ideal PBGF and NANF with Similar Loss

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m 2t n 2 1 m ,m=1,2,3,
α sc [dB/km]=ηF ( λ[μm] λ 0 ) 3 .
n ' = n e ( x R c ) ~ n ( 1 + x R c )

Metrics