Abstract

A novel hybridized plasmonic whispering gallery mode (WGM) microcavities composed of graphene monolayer coated ZnO microrod with hexagonal cross section were proposed that operates in the ultraviolet region. π and π + σ surface plasmon modes in graphene monolayer at 4.7 eV and 14.6 eV can be used to achieve the near field coupling interaction between surface plasmonic modes and the conventional WGM microcavity modes in the ultraviolet band. Significantly, the coupling, happened in the evanescent wave field excited along the interface between ZnO and graphene, can lead to distinct optical field confinement and lasing enhancement experimentally, so as well as WGM lasing characteristics, such as the higher cavity quality factor (Q), narrower linewidth, lasing intensities enhancement. The results could provide a platform to study hybridized plasmonic cavity dynamics, and also provides the building blocks to construct graphene based novel microcavity for high performance ultraviolet laser devices with potential application to optical signal processing, biological monitoring, and so on.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited]

Yue-De Yang, Min Tang, Fu-Li Wang, Zhi-Xiong Xiao, Jin-Long Xiao, and Yong-Zhen Huang
Photon. Res. 7(5) 594-607 (2019)

Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity

Jing Zhao, Xianhe Liu, Weibin Qiu, Yuhui Ma, Yixin Huang, Jia-Xian Wang, Kan Qiang, and Jiao-Qing Pan
Opt. Express 22(5) 5754-5761 (2014)

2D-material-integrated whispering-gallery-mode microcavity

Lu Wang, Xuefei Zhou, Shuo Yang, Gaoshan Huang, and Yongfeng Mei
Photon. Res. 7(8) 905-916 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
    [Crossref] [PubMed]
  3. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [Crossref] [PubMed]
  4. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  5. C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
    [Crossref]
  6. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
    [Crossref] [PubMed]
  7. R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
    [Crossref]
  8. S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
    [Crossref] [PubMed]
  9. M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
    [Crossref] [PubMed]
  10. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
    [Crossref]
  11. M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
    [Crossref]
  12. M. Ding, D. X. Zhao, B. Yao, S. L. E, Z. Guo, L. G. Zhang, and D. Z. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20, 13657–13662 (2012).
    [Crossref] [PubMed]
  13. Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
    [Crossref] [PubMed]
  14. G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
    [Crossref] [PubMed]
  15. W. Jan, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
    [Crossref]
  16. G. Marius and D. Christof P, “Whispering gallery modes in deformed hexagonal resonators,” Phys. Status Solidi B 249, 871–879 (2012).
    [Crossref]
  17. H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
    [Crossref]
  18. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
    [Crossref]
  19. S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
    [Crossref]
  20. Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
    [Crossref]
  21. Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
    [Crossref]
  22. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1, e20 (2012).
    [Crossref]
  23. Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
    [Crossref]
  24. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  25. J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
    [Crossref] [PubMed]
  26. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
    [Crossref]
  27. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
    [Crossref]
  28. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
    [Crossref]
  29. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref] [PubMed]
  30. F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref] [PubMed]
  31. W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
    [Crossref] [PubMed]
  32. R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
    [Crossref]
  33. S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
    [Crossref] [PubMed]
  34. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
    [Crossref]
  35. Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
    [Crossref]
  36. L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
    [Crossref] [PubMed]
  37. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
    [Crossref]
  38. O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
    [Crossref]
  39. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
    [Crossref] [PubMed]
  40. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
    [Crossref] [PubMed]
  41. T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
    [Crossref]
  42. P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
    [Crossref] [PubMed]
  43. S. Das Sarma and E. H. Hwang, “Collective Modes of the Massless Dirac Plasma,” Phys. Rev. Lett. 102, 206412 (2009).
    [Crossref] [PubMed]
  44. Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81, 081406(R) (2010).
    [Crossref]
  45. Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
    [Crossref]
  46. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, 332, 1291–1294 (2011).
    [Crossref]
  47. J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
    [Crossref] [PubMed]
  48. V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3, e191 (2014).
    [Crossref]
  49. I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
    [Crossref]
  50. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
    [Crossref]
  51. G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J App. Phys. 103, 064302 (2008).
    [Crossref]
  52. C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” App. Phys. Lett. 101, 111609 (2012).
    [Crossref]
  53. L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
    [Crossref]
  54. W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref] [PubMed]
  55. J. Zhao, X. H. Liu, W. B. Qiu, Y. H. Ma, Y. X. Huang, J. X. Wang, K Qiang, and J. Q. Pan, “Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity,” Opt. Express 22, 5754 (2014).
    [Crossref] [PubMed]
  56. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
    [Crossref]
  57. R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
    [Crossref] [PubMed]

2014 (8)

R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
[Crossref]

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3, e191 (2014).
[Crossref]

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

J. Zhao, X. H. Liu, W. B. Qiu, Y. H. Ma, Y. X. Huang, J. X. Wang, K Qiang, and J. Q. Pan, “Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity,” Opt. Express 22, 5754 (2014).
[Crossref] [PubMed]

2013 (6)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
[Crossref]

O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
[Crossref]

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
[Crossref]

2012 (9)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1, e20 (2012).
[Crossref]

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

G. Marius and D. Christof P, “Whispering gallery modes in deformed hexagonal resonators,” Phys. Status Solidi B 249, 871–879 (2012).
[Crossref]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” App. Phys. Lett. 101, 111609 (2012).
[Crossref]

M. Ding, D. X. Zhao, B. Yao, S. L. E, Z. Guo, L. G. Zhang, and D. Z. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20, 13657–13662 (2012).
[Crossref] [PubMed]

2011 (5)

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, 332, 1291–1294 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

2010 (8)

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81, 081406(R) (2010).
[Crossref]

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

2009 (5)

S. Das Sarma and E. H. Hwang, “Collective Modes of the Massless Dirac Plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

2008 (6)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J App. Phys. 103, 064302 (2008).
[Crossref]

2007 (1)

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

2006 (1)

R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
[Crossref] [PubMed]

2005 (1)

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

2004 (1)

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

2003 (3)

W. Jan, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[Crossref]

W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

1999 (1)

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

1996 (1)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Ahn, K. J.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Alfred, F.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Apalkov, V.

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3, e191 (2014).
[Crossref]

Asmara, T. C.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Baldassarri, Höger

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Bangert, U.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Barakat, E.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Barnes, W. L.

W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Bartal, G.

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
[Crossref] [PubMed]

Berman, O. L.

O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
[Crossref]

Blake, P.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Bleloch, A. L.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Briddon, P. R.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Butté, R.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Cai, L. S.

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Cai, S. L.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

Carlin, J.-F.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Chanaka, R.

R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Chang, S. W.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Chen, G. F.

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Chen, H. Y.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

Chen, R.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

Chen, W.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Chen, Y. L.

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

Choi, S.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Christmann, G.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Christof P, D.

G. Marius and D. Christof P, “Whispering gallery modes in deformed hexagonal resonators,” Phys. Status Solidi B 249, 871–879 (2012).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Chuang, S. L.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Cohen, M. L.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

Cole, R. M.

R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
[Crossref] [PubMed]

Dai, J.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Das Sarma, S.

S. Das Sarma and E. H. Hwang, “Collective Modes of the Massless Dirac Plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref] [PubMed]

Dereux, Al.

W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Deslippe, J.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

Di Francesco, J.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Ding, K.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1, e20 (2012).
[Crossref]

Ding, M.

Ding, T.

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Dong, C. H.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

E, S. L.

Ebbesen, T. W.

W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Eberlein, T.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Emtsev, K. V.

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, 332, 1291–1294 (2011).
[Crossref]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Feick, H. N.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Feltin, E.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” App. Phys. Lett. 101, 111609 (2012).
[Crossref]

Gao, G. Y.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Gao, W. L.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Gargas, Da. J.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Gass, M.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Geim, A.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Geim, A. K.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Giorgetti, C.

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Gogoi, P. K.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Gong, Q. H.

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Grandjean, N.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Gray, S. K.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Grundmann, M.

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

Grundy, A. J. D.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Guo, Z.

Han, Z. F.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J App. Phys. 103, 064302 (2008).
[Crossref]

He, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Herzig, H. P.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Hong, B. H.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Hong, S. H.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Hu, Y. W.

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

Huang, M. H

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Huang, Y. X.

Hvozdara, L.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Hwang, E. H.

S. Das Sarma and E. H. Hwang, “Collective Modes of the Massless Dirac Plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref] [PubMed]

Hwang, S. W.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Ilchenko, V. S.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Jan, W.

W. Jan, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[Crossref]

Javier Garcia de Abajo, F.

F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Jiang, M. M.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Jones, R.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Kaidashev, E. M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

Kavokin, A. V.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Ke, Y. F.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

Kezerashvili, R. Ya.

O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
[Crossref]

Kim, G.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Kim, J.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Kim, M. C.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Kim, S.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Kind, Hannes

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Kudo, H.

H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
[Crossref]

Ladisa, M.

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

Lagoudakis, P. G.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Lai, Y. Y.

Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
[Crossref]

Lan, Y. P.

Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
[Crossref]

Le, A. P.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Li, B. B.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Li, J. T.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Li, Y.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Lim, K. Y.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Lin, Y.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Ling, B.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

Liu, X. H.

Liu, Y.

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81, 081406(R) (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Lorenz, M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

Louie, S. G.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

Lozovik, Y. E.

O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
[Crossref]

Lu, T. C.

Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
[Crossref]

Ma, R. M.

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Ma, Y. H.

Malin,

R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
[Crossref]

Mao, S.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Marius, G.

G. Marius and D. Christof P, “Whispering gallery modes in deformed hexagonal resonators,” Phys. Status Solidi B 249, 871–879 (2012).
[Crossref]

Massimo, C.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Moore, J. S.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Moore, M. C.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Nair, R. R.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Nan, H. Y.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Ni, A.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Ni, Z. H.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Ning, C. Z.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1, e20 (2012).
[Crossref]

Nobis, T.

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

Nuzzo, R. G.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Oh Kim, C.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Olevano, V.

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Oulton, R. F

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Ozdemir, S. K.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Pan, J. Q.

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Park, C. H.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Pereira, V. M.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
[Crossref]

Premaratne, R. I. D

R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
[Crossref]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Qiang, K

Qiu, C. Y.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Qiu, W. B.

Rahm, A.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

Ralph, W.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Reining, L.

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

Roberto, C.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Rogers, J. A.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Russo, R.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Rusydi, A.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Santoso, I.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Savchenkov, A. A.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Seyller, Th.

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

Sfez, T.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Shan, C. X.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

Shen, D. Z.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

M. Ding, D. X. Zhao, B. Yao, S. L. E, Z. Guo, L. G. Zhang, and D. Z. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20, 13657–13662 (2012).
[Crossref] [PubMed]

Shi, Z. L.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Shi, Ze. L.

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Shin, D. H.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Shu, J.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Sim, S. H.

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Singh, R. S.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Sorger, V. J

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Stockman, M. I.

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3, e191 (2014).
[Crossref]

Su, Y. H.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

Sugawara, Y.

R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
[Crossref] [PubMed]

Sun, H. D.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

Sun, X. W.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Suzuki, R.

H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
[Crossref]

Takao, S.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

Tanabe, T.

H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
[Crossref]

Tian, Z. S.

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Trevisanutto, P. E.

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, 332, 1291–1294 (2011).
[Crossref]

von Högersthal, G.

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Wang, J. X.

Wang, S. F.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

Weber, E.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Wee, A. T. S.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

Wei, D.

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Willis, R. F.

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81, 081406(R) (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

Wu, Y. Y.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Xiao, Y. F.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Xu, C. X.

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Xu, Q. F.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Yan, H. Q.

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Yang, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

Yang, P. D.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

Yao, B.

Yao, J. M.

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

Yao, Q. Y.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

Yasuhiko, A.

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

Yu, L. B.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, L. G.

Zhang, X.

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, Z. Y.

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

Zhao, B.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

Zhao, D. X.

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

M. Ding, D. X. Zhao, B. Yao, S. L. E, Z. Guo, L. G. Zhang, and D. Z. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20, 13657–13662 (2012).
[Crossref] [PubMed]

Zhao, J.

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Zhu, G. P.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Zhu, G. Y.

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

Zou, C. L.

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (2)

G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Ze. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, “Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities,” ACS Appl. Mater. Interfaces 4, 6195–6201 (2012).
[Crossref] [PubMed]

J. T. Li, C. X. Xu, H. Y. Nan, M. M. Jiang, G. Y. Gao, Y. Lin, J. Dai, G. Y. Zhu, Z. H. Ni, S. F. Wang, and Y. Li, “Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity,” ACS Appl. Mater. Interfaces 6, 10469–10475 (2014).
[Crossref] [PubMed]

ACS Nano (3)

Da. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[Crossref] [PubMed]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

R. Chanaka, R. I. D Premaratne, and Malin, “Spaser Made of Graphene and Carbon Nanotubes,” ACS Nano 8, 2431–2438 (2014).
[Crossref]

Adv. Mater. (3)

J. M. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23, 2199–2204 (2011).
[Crossref] [PubMed]

App. Phys. Lett. (1)

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” App. Phys. Lett. 101, 111609 (2012).
[Crossref]

J App. Phys. (1)

G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J App. Phys. 103, 064302 (2008).
[Crossref]

Laser Photonics Rev. (3)

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, “Whispering-gallery mode lasing in ZnO microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Light: Sci. Appl. (5)

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1, e20 (2012).
[Crossref]

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Sci. Appl. 1, e14 (2012).
[Crossref]

Y. Y. Lai, Y. P. Lan, and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Sci. Appl. 2, e76 (2013).
[Crossref]

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light: Sci. Appl. 3, e124 (2014).
[Crossref]

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3, e191 (2014).
[Crossref]

Nano Lett. (1)

F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Nanoscale (1)

M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry–Perot microcavity of Ag/ZnO microwires,” Nanoscale 6, 1354–1361 (2014).
[Crossref]

Nat Photonics (2)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat Photonics 7, 963–968 (2013).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat Photonics 2, 351–354 (2008).
[Crossref]

Nat. Mater. (1)

R. M. Ma, R. F Oulton, V. J Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]

Nat. Photonics (1)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Nature (4)

W. L. Barnes, Al. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Nature Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics 6, 749–758 (2012).
[Crossref]

Opt Lett. (1)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (4)

W. Jan, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[Crossref]

H. Kudo, R. Suzuki, and T. Tanabe, “Whispering gallery modes in hexagonal microcavities,” Phys. Rev. A 88, 023807 (2013).
[Crossref]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

Y. L. Chen, C. L. Zou, Y. W. Hu, and Q. H. Gong, “High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity,” Phys. Rev. A 87, 023824 (2013).
[Crossref]

Phys. Rev. B (8)

O. L. Berman, R. Ya. Kezerashvili, and Y. E. Lozovik, “Graphene nanoribbon based spaser,” Phys. Rev. B 88, 235424 (2013).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81, 081406(R) (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403(R)(2008).
[Crossref]

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B 77, 233406 (2008).
[Crossref]

I. Santoso, R. S. Singh, P. K. Gogoi, T. C. Asmara, D. Wei, W. Chen, A. T. S. Wee, V. M. Pereira, and A. Rusydi, “Tunable optical absorption and interactions in graphene via oxygen plasma,” Phys. Rev. B 89, 075134 (2014).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Phys. Rev. Lett. (8)

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab Initio GW Many-Body Effects in Graphene,” Phys. Rev. Lett. 101, 226405 (2008).
[Crossref] [PubMed]

S. Das Sarma and E. H. Hwang, “Collective Modes of the Massless Dirac Plasma,” Phys. Rev. Lett. 102, 206412 (2009).
[Crossref] [PubMed]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref] [PubMed]

R. M. Cole, Y. Sugawara, and J. J. Baumberg, ”Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films,” Phys. Rev. Lett. 97, 137401 (2006).
[Crossref] [PubMed]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene,” Phys. Rev. Lett. 103, 186802 (2009).
[Crossref] [PubMed]

S. W. Hwang, D. H. Shin, C. Oh Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105, 127403 (2010).
[Crossref] [PubMed]

S. Christopoulos, G. von Högersthal, Höger Baldassarri, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

G. Marius and D. Christof P, “Whispering gallery modes in deformed hexagonal resonators,” Phys. Status Solidi B 249, 871–879 (2012).
[Crossref]

Science (3)

S. Takao, W. Ralph, F. Alfred, C. Massimo, C. Roberto, and A. Yasuhiko, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285, 1905–1906 (1999).
[Crossref]

M. H Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, Hannes Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Science, (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, 332, 1291–1294 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simulation of near field E(x, y) patterns of the hexagonal cross section of ZnO microrod resonator with different diameter shown in the inset. The corresponding resonant wavelength around 390 nm.
Fig. 2
Fig. 2 Calculated electric field intensity distribution of a bare ZnO microrod placed on substrate: (a) z component of electrical field distribution along x–y-plane, which a slice of the bare microrod, could demonstrate the WGM mode characteristics; (b) and (d) show y component of electrical field distribution along y–z-plane, x–z-plane, respectively; (c) indicates the WGM modes of a bare ZnO microrod with hexagonal cross section; (e) displays y component of electrical field distribution along y–z-plane, which can reveal the photons escaped from the WGM microcavity transmission process along the axis of microrod; (f) z component of electrical field distribution along x–y-plane with four slices of the bare microrod. Corresponding parameters nZnO = 2.5, nSiO2 = 1.5, nair = 1, and the diameter of ZnO microrod D = 10 μm, with corresponding calculated wavelength λ0 = 390 nm. The centre of the microrod defines the origin (x = y = 0.)
Fig. 3
Fig. 3 (a) schematic diagram of graphene monolayer coated ZnO hexagonal microrod; (b) Excitation of surface plasmons along the interface between graphene and ZnO, the hybrid structures can be treated as air/graphene/ZnO, evanescent wave field excited along the interface confined within ZnO, which provides a platform to achieve the coupling between surface plasmonic mode and the conventional WGM microcavity mode.
Fig. 4
Fig. 4 Hybrid plasmonic WGM microcavities: (a) displays the WGM modes of a bare ZnO microrod with hexagonal cross section, corresponding effective mode refractive index nhyb = 2.4903; (b) displays the hybrid plasmonic WGM mode composed of the SPP mode and dielectric mode. On the basis of the upper surface of ZnO microrod covered by graphene monolayer, guided SPPs would be confined within the contact area between graphene and ZnO, corresponding effective mode refractive index nhyb = 2.498; (c) displays unmixed SPPs mode supported by graphene, corresponding effective mode refractive index nhyb = 2.63; (d)–(f) plot the normalized electric field intensities of optical WGM mode, hybridized plasmonic WGM mode and unmixed SPPs mode along the y axis, respectively; (g)–(i) demonstrate the conventional optical WGM microcavity mode with nhyb = 2.4903, the hybrid plasmonic WGM mode composed of the SPP mode and dielectric mode with nhyb = 2.4983 and unmixed SPPs mode supported by graphene monolayer with nhyb = 2.6293, respectively. The incident calculated wavelength λ0 = 390 nm, relative index of refraction of graphene monolayer εgraphene = 5.28 + 7.78i [27, 36, 49] with the thickness of graphene monolayer set 0.5 nm.
Fig. 5
Fig. 5 (a) demonstrate the far-field image of the lasing a bare ZnO hexagonal microrod cavity (BMC), ZnO microrod coated by a graphene monolayer (GMC1), and ZnO microrod coated by two graphene monolayers by means of the upper and down surface of ZnO hexagonal microrod (GMC2), taken by a digital camera, respectively; (b) demonstrate emission spectra of a bare ZnO microrod, intensity modulation of ZnO microrod coated by a graphene monolayer, and intensity modulation of ZnO microrod coated by two graphene monolayers optically pumped with 20 μW, respectively; (c) reveals the nonlinear response of the output power to the peak pump intensity; (d) reveals the calculated Q-factors of WGM microcavities for a bare ZnO hexagonal microrod cavity, graphene monolayer coated ZnO hexagonal microrod cavity, and graphene monolayers coated the upper and down surfaces of ZnO hexagonal microrod cavity, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

1 λ = 2 3 3 n D [ N + 6 π tan 1 ( β 3 n 2 4 ) ]
Q = m π n D R m / 4 2 λ ( 1 R m / 2 ) sin ( 2 π m ) .
ω ( q ) = [ 4 π n e e 2 m * ( 1 + ε ZnO ) q + 3 4 υ F 2 q 2 + ] 1 / 2 ,
ε air k x ( air ) + ε ZnO k x ( ZnO ) + i σ ω ε 0 = 0 ,
β sp ( ω ) = π ε 0 c e 2 υ F n e ( ε air + ε ZnO ) ( ω 2 + i ω τ 1 )
λ sp λ 0 = e 2 υ F n e π ε 0 c 2 ( ε air + ε ZnO ) 1 ω + i τ 1 .
x ¨ + γ x ¨ + ω 0 2 x = e m E 0 e i ω t , γ = e 2 ω 2 6 π ε 0 m c 3
x = e m 1 ω 0 2 ω 2 i ω γ E 0 e i ω t = e m 1 ( ω 0 2 ω 2 ) 2 + ω 2 γ 2 E 0 e i ( ω t δ ) tan δ = ω γ ω 0 2 ω 2
E = e x ¨ 4 π ε 0 c 2 r sin α
S ¯ = e 4 E 0 2 32 π 2 ε 0 c 3 m 2 r 2 ω 4 ( ω 0 2 ω 2 ) 2 + ω 2 γ 2 sin 2 α
P = 8 π 3 r e 2 ω 4 ( ω 0 2 ω 2 ) 2 + ω 2 γ 2 I 0 2 .
σ = 8 π 3 r e 2 ω 4 ( ω 0 2 ω 2 ) 2 + ω 2 γ 2

Metrics