Abstract

We present a detailed theoretical analysis of the optical response of threaded plasmonic nanoparticle strings, chains of metallic nanoparticles connected by cylindrical metallic bridges (threads), based on full-electrodynamic calculations. The extinction spectra of these complex metallic nanostructures are dominated by large resonances in the near infrared, which are associated with charge transfer along the entire string. By analysing contour plots of the electric field amplitude and phase we show that such strings can be interpreted as an intermediate situation between metallic nanoparticle chains and metallic nanorods, exhibiting characteristics of both. Modifying the dielectric environment, the number of nanoparticles within the strings, and the dimensions of the threads, allows for tuning the optical response of the strings within a very broad region in the visible and near infrared.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers

Isabel Romero, Javier Aizpurua, Garnett W. Bryant, and F. Javier García de Abajo
Opt. Express 14(21) 9988-9999 (2006)

Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas

Mario Zapata, Ángela S. Camacho Beltrán, Andrei G. Borisov, and Javier Aizpurua
Opt. Express 23(6) 8134-8149 (2015)

Superfocusing effect in the chain of silver nanorods

Zhidong Zhang, Zhongyue Zhang, and Hongyan Wang
Appl. Opt. 50(20) 3513-3518 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
    [Crossref]
  2. H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
    [Crossref] [PubMed]
  3. A. G. Brolo, “Plasmonics for future biosensors,” Nature Photon. 6, 709–713 (2012).
    [Crossref]
  4. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
    [Crossref] [PubMed]
  5. D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
    [Crossref] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
    [Crossref]
  7. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref] [PubMed]
  8. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Mater. 11, 917–924 (2012).
    [Crossref]
  9. Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
    [Crossref] [PubMed]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
    [Crossref]
  11. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
    [Crossref] [PubMed]
  12. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).
    [Crossref]
  13. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).
  14. A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
    [Crossref]
  15. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
    [Crossref] [PubMed]
  16. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
    [Crossref]
  17. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [Crossref] [PubMed]
  18. E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
    [Crossref]
  19. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
    [Crossref] [PubMed]
  20. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
    [Crossref] [PubMed]
  21. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
    [Crossref]
  22. E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
    [Crossref] [PubMed]
  23. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
    [Crossref]
  24. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref] [PubMed]
  26. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  27. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [Crossref]
  28. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [Crossref] [PubMed]
  29. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
    [Crossref] [PubMed]
  30. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [Crossref] [PubMed]
  31. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [Crossref] [PubMed]
  32. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
    [Crossref]
  33. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [Crossref]
  34. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
    [Crossref] [PubMed]
  35. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  36. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
    [Crossref]
  37. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
    [Crossref]
  38. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
    [Crossref]
  39. S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
    [Crossref] [PubMed]
  40. T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
    [Crossref] [PubMed]
  41. R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
    [Crossref] [PubMed]
  42. C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
    [Crossref]
  43. Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
    [Crossref]
  44. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
    [Crossref]
  45. R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
    [Crossref] [PubMed]
  46. F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873–15884 (1997).
    [Crossref]
  47. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [Crossref]
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  49. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
    [Crossref]
  50. Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
    [Crossref] [PubMed]
  51. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
    [Crossref] [PubMed]
  52. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  53. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]

2014 (3)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

2013 (9)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref] [PubMed]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

2012 (7)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
[Crossref] [PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nature Photon. 6, 709–713 (2012).
[Crossref]

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Mater. 11, 917–924 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

2011 (6)

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref] [PubMed]

2010 (2)

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

2009 (1)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

2008 (3)

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

2007 (3)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

2006 (4)

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

2005 (3)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

2004 (3)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

2003 (2)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

2002 (3)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

2000 (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

1998 (1)

1997 (1)

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873–15884 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Aizpurua, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873–15884 (1997).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

Aussenegg, F. R.

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

Barrow, S. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Baumberg, J. J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Beitner, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nature Photon. 6, 709–713 (2012).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

Carbó-Argibay, E.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

Centeno, A.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
[Crossref] [PubMed]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Chen, H.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
[Crossref] [PubMed]

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Chen, T.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Chen, Y. L.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

Cheng, W.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

Christofi, A.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cushman, B.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Darvill, D.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
[Crossref] [PubMed]

Davis, T. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Drezek, R. A.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Esteban, R.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Fang, Z.

Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref] [PubMed]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Feizpour, A.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Funston, A. M.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Gantzounis, G.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873–15884 (1997).
[Crossref]

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Gobin, A. M.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Gómez, D. E.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Hafner, J. H.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

Halas, N. J.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Hao, F.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Henry, A.-I.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

Huang, F. M.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Mater. 11, 917–924 (2012).
[Crossref]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

Koh, A. L.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Krenn, J. R.

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

Lee, T.-C.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Leitner, A.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
[Crossref]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Liu, R.-S.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

Liz-Marzán, L. M.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Lowery, A. R.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Mahajan, S.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Marks, L. D.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Mulvaney, P.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Nehl, C. L.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

Nordlander, P.

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Pacifico, J.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

Papanikolaou, N.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

Pastoriza-Santos, I.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Pérez-González, O.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

Pérez-Juste, J.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

Pourmand, M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Quinten, M.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Ratner, M. A.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
[Crossref] [PubMed]

Reinhard, B. M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Ringe, E.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

Rodríguez-González, B.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

Romero, I.

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Schatz, G. C.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Sharma, B.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Sobhani, A.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

Stefanou, N.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Tam, F.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

Taylor, R. W.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Tsai, D. P.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

West, J. L.

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Xie, F.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Zabala, N.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Zhang, L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zhang, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Zhao, K.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Mater. 11, 917–924 (2012).
[Crossref]

Zhu, X.

Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref] [PubMed]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

ACS Nano (2)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

ACS Photon. (1)

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photon. 1, 228–234 (2014).
[Crossref]

Adv. Mater. (2)

Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
[Crossref]

Ann. Biomed. Eng. (1)

L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[Crossref]

Coord. Chem. Rev. (1)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization, and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008).
[Crossref]

J. Phys. Chem. C (1)

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C 116, 16674–16679 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Langmuir (1)

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

Nano Lett. (9)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[Crossref] [PubMed]

Nanoscale (1)

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref] [PubMed]

Nature (2)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Nature Commun. (1)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nature Commun. 5, 4568 (2014).
[Crossref]

Nature Mater. (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Mater. 11, 917–924 (2012).
[Crossref]

Nature Nanotech. (1)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
[Crossref]

Nature Photon. (3)

A. G. Brolo, “Plasmonics for future biosensors,” Nature Photon. 6, 709–713 (2012).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

New J. Phys. (1)

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31, 152–160 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (2)

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).
[Crossref] [PubMed]

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15, 15709–15726 (2013).
[Crossref] [PubMed]

Phys. Rev. B (7)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using near-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873–15884 (1997).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity and in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75, 096402 (2012).
[Crossref] [PubMed]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76, 046401 (2013).
[Crossref] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Extinction (σext) spectra for the unthreaded (black dashed curve) and the threaded (red solid curve) gold nanoparticle dimers in air shown schematically on top. The dimers consist of two gold nanospheres with diameter D = 40 nm, separated by a 1-nm gap, and are illuminated by a plane wave polarised along the dimer axis. The gold thread connecting the two nanospheres is modelled as a cylinder with length d = 1 nm and diameter w = 10 nm. (b) Extinction spectra of an unthreaded chain consisting of N = 8 gold nanospheres (D = 40 nm) (black dashed curve) and the corresponding threaded nanoparticle string (red solid curve) shown schematically on top (d = 1 nm, w = 10 nm) in air, illuminated by a plane wave polarised along the chain axis.
Fig. 2
Fig. 2 (a) Contour plots (on logarithmic scale) of the extinction cross section, normalised to the geometric cross section πN(D/2)2, for gold nanoparticle strings consisting of N = 2 to 10 nanospheres (D = 40 nm, w = 20 nm), in air. The contour serves as a guide to the eye: only values for integer N have a physical meaning. (b) Contour plots (on logarithmic scale) of the extinction cross section, normalised to the geometric cross section πN(D/2)2, for a string consisting of eight 40-nm nanospheres, as a function of thread width w, in air. (c) Same as (a), in water. (d) Same as (b), in water. In all contour plots, the black lines trace the resonance peaks of the modes. Black and blue circles in (a) and (c) mark the BDP and CTP modes, respectively. Blue circles in (b) and (d) mark the nanorod antenna modes.
Fig. 3
Fig. 3 (a) Extinction cross section (on logarithmic scale) for a gold nanoparticle string (w = 15 nm) consisting of eight 40-nm nanospheres in water. (b) From top to bottom: contours of the normalised electric field amplitude (|E/E0|, left contours) and the phase of the electric field component parallel to the string axis (ϕEz, right contours), at the wavelengths of TCP1 (λ = 2390 nm), TCP2 (λ = 1030 nm), TCP3 (λ = 850 nm), and CCP (λ = 545 nm), for the gold nanosphere string of (a).
Fig. 4
Fig. 4 Contour plots of the normalised electric field amplitude for a chain of eight 40-nm nanospheres in water, as the thread increases from w = 0 nm (unthreaded chain, top contours), to w = 40 nm (perfect nanorod, bottom contours), for the TCP1 (left contours) and the TCP2 (right contours) modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G TCP = c 8 λ TCP D 2 d ,
w TCP 2 = 4 d π G TCP κ ,

Metrics