Abstract

We propose and demonstrate novel band-rejection filtering scheme based on lossy torsional acousto-optic (AO) coupling in a single polarization fiber. Simulation results show that the polarization insensitive notch depth of −30dB is achievable for a 2-m-long fiber in the state-of-the-art fiber manufacturing technology. More efficient band-rejection in excess of −44dB could be also feasible in practical fiber length. Good agreement between our numerical simulations and proof-of-principle experiments is obtained in optical communication C-band. The measured notch depth is −29.4dB for a low loss polarization mode after propagating an AO interaction length of 49.8 cm. The filtered wavelength could be tuned linearly by the variable acoustic transducer frequency with the slope of 0.61 nm/kHz, and the polarization dependence of notch depth was measured to 0.8dB in our setup. Our experiments confirm the validity and practicality of the approach, and illustrate the in-fiber torsional AO band-rejection filter with simpler device configuration is achievable.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral shaping of an all-fiber torsional acousto-optic tunable filter

Jeakwon Ko, Kwang Jo Lee, and Byoung Yoon Kim
Appl. Opt. 53(36) 8499-8506 (2014)

Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact

Kwang Jo Lee, In-Kag Hwang, Hyun Chul Park, and Byoung Yoon Kim
Opt. Express 17(8) 6096-6100 (2009)

Sidelobe suppression in all-fiber acousto-optic tunable filter using torsional acoustic wave

Kwang Jo Lee, In-Kag Hwang, Hyun Chul Park, and Byoung Yoon Kim
Opt. Express 18(12) 12059-12064 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [Crossref] [PubMed]
  2. K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
    [Crossref] [PubMed]
  3. M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
    [Crossref]
  4. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13(1), 112–118 (1996).
    [Crossref]
  5. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
    [Crossref]
  6. K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
    [Crossref] [PubMed]
  7. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact,” Opt. Express 17(8), 6096–6100 (2009).
    [Crossref] [PubMed]
  8. D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
    [Crossref]
  9. M. S. Kang, H. S. Park, and B. Y. Kim, “Two-mode fiber acousto-optic tunable bandpass filter with zero frequency-shift,” IEEE Photon. Technol. Lett. 18(15), 1645–1647 (2006).
    [Crossref]
  10. W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37(7), 1241–1243 (2012).
    [Crossref] [PubMed]
  11. W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters,” Opt. Express 21(14), 16621–16628 (2013).
    [Crossref] [PubMed]
  12. B. M. Beadle and J. Jarzynski, “Measurement of speed and attenuation of longitudinal elastic waves in optical fibers,” Opt. Eng. 40(10), 2115–2119 (2001).
    [Crossref]
  13. A. W. Snyder and J. Jove, Optical Waveguide Theory (Springer, 1983).
  14. K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express 16(7), 4631–4638 (2008).
    [Crossref] [PubMed]
  15. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2010 (2)

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[Crossref]

K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

M. S. Kang, H. S. Park, and B. Y. Kim, “Two-mode fiber acousto-optic tunable bandpass filter with zero frequency-shift,” IEEE Photon. Technol. Lett. 18(15), 1645–1647 (2006).
[Crossref]

2002 (1)

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[Crossref]

2001 (1)

B. M. Beadle and J. Jarzynski, “Measurement of speed and attenuation of longitudinal elastic waves in optical fibers,” Opt. Eng. 40(10), 2115–2119 (2001).
[Crossref]

1997 (1)

1996 (1)

1995 (1)

1991 (1)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

Beadle, B. M.

B. M. Beadle and J. Jarzynski, “Measurement of speed and attenuation of longitudinal elastic waves in optical fibers,” Opt. Eng. 40(10), 2115–2119 (2001).
[Crossref]

Berwick, M.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

Bo, F.

Burdge, G. L.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[Crossref]

Dimmick, T. E.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[Crossref]

Engan, H. E.

Gao, F.

Hong, K. S.

Huang, L.

Hwang, I.-K.

Jackson, D. A.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

Jarzynski, J.

B. M. Beadle and J. Jarzynski, “Measurement of speed and attenuation of longitudinal elastic waves in optical fibers,” Opt. Eng. 40(10), 2115–2119 (2001).
[Crossref]

Kang, M. S.

M. S. Kang, H. S. Park, and B. Y. Kim, “Two-mode fiber acousto-optic tunable bandpass filter with zero frequency-shift,” IEEE Photon. Technol. Lett. 18(15), 1645–1647 (2006).
[Crossref]

Kim, B. Y.

Kim, H. S.

Kwang, I. K.

Lee, K. J.

Nam, K. H.

Östling, D.

Pannell, C. N.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

Park, H. C.

Park, H. S.

M. S. Kang, H. S. Park, and B. Y. Kim, “Two-mode fiber acousto-optic tunable bandpass filter with zero frequency-shift,” IEEE Photon. Technol. Lett. 18(15), 1645–1647 (2006).
[Crossref]

Russell, P. St. J.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

Satorius, D. A.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[Crossref]

Xu, J.

Xuan, L.

Yun, S. H.

Zhang, G.

Zhang, W.

Electron. Lett. (1)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (3)

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[Crossref]

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[Crossref]

M. S. Kang, H. S. Park, and B. Y. Kim, “Two-mode fiber acousto-optic tunable bandpass filter with zero frequency-shift,” IEEE Photon. Technol. Lett. 18(15), 1645–1647 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

B. M. Beadle and J. Jarzynski, “Measurement of speed and attenuation of longitudinal elastic waves in optical fibers,” Opt. Eng. 40(10), 2115–2119 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

A. W. Snyder and J. Jove, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the proposed band-rejection filtering scheme based on torsional AO coupling in a single polarization HB fiber. The input polarization state is set to be parallel to the polarization axis of propagation mode.
Fig. 2
Fig. 2 Calculated modal powers plotted as a function of the propagation length L when (a) α1 = α2 = 0, and (b) α1 = 0, α2 = 30 dB/m. The blue solid, cyan dashed, magenta dash-dotted lines denote the modal powers of vertically polarized input mode, horizontally polarized coupled mode, and sum of each mode, respectively.
Fig. 3
Fig. 3 Calculated filter transmission curves for several values of L. The blue solid, cyan dashed, and magenta dash-dotted lines represent the transmission curves of vertically polarized input mode, horizontally polarized coupled mode, and the sum of each, respectively.
Fig. 4
Fig. 4 (a) Calculated transmission spectra of the proposed scheme for several values of L when output polarizers are not used, and (b) calculated maximum extinction at resonance (or notch depth) plotted as a function of L. Its slope estimated by linear fitting is −15.03dB/m.
Fig. 5
Fig. 5 (a) Calculated transmission spectra of the torsional AOTF using a HB fiber with the same fiber parameters for the case of Fig. 4(a) except the linear loss coefficients of α1 = α2 = 0. (b) Calculated 3dB-bandwidths of the torsional AOTFs using a single polarization fiber [Fig. 4(a)] and a HB fiber [Fig. 5(a)] plotted as a function of L.
Fig. 6
Fig. 6 Calculated 3dB bandwidths for the HB fiber with the different values of α2.
Fig. 7
Fig. 7 Schematic diagram of the experimental setup that we used to validate our band-rejection filtering approach and associated model. Inset shows the cross-section view of the HB fiber used for measurements. The outer diameter of the bare fiber section is 80 μm.
Fig. 8
Fig. 8 (a) Transmission curves of the off-resonant propagation mode measured at the applied RF frequency of 1.189 MHz (blue solid line) and the calculated spectrum (magenta dashed line) where the same experimental parameters are considered, and (b) the measured and calculated notch depth of the resonant dip plotted as a function of L.
Fig. 9
Fig. 9 (a) Transmission curves of the proposed AOTF measured at the various RF frequencies applied to the transducer, and (b) the measured resonant wavelength (λr) plotted as a function of the applied RF frequency (fa), exhibiting a linear relationship.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= L B (λ)= λ Δn(λ) ,
d E 1 (z) dz = α 1 2 E 1 (z)iκ E 2 (z) e iΔβz , d E 2 (z) dz = α 2 2 E 2 (z)iκ E 1 (z) e iΔβz ,
Δβ=2π( 1 L B (λ) 1 Λ ).
E 1 (z)= 1 A e z( α 1 + α 2 ) /4 [ Acos( Az 4 )( α 1 α 2 )sin( Az 4 ) ], E 2 (z)= 4κ iA e z( α 1 + α 2 ) /4 sin( Az 4 ), where A 16 κ 2 ( α 1 α 2 ) 2 .

Metrics