Abstract

We propose in this paper a graphene-coated tapered nanowire probe providing strong field enhancement in the infrared regimes. The analytical field distributions and characteristic equation of the supported surface plasmons mode are derived. Based on the adiabatic approximation, analytic methods are adopted in the investigation of field enhancement along the tapered region and show well consistence with the rigorous numerical simulations. Both the numerical and analytical results have shown that the graphene-coated nanowire probe could achieve an order of magnitude larger field enhancement than the metal-coated probes. The proposed probe may have promising applications for single molecule detection, measurement and nano-manipulation techniques.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanofocusing in the graphene-coated tapered nanowire infrared probe

Bofeng Zhu, Guobin Ren, Yixiao Gao, Yang Yang, Beilei Wu, Yudong Lian, and Shuisheng Jian
J. Opt. Soc. Am. B 32(5) 955-960 (2015)

Analytical model for plasmon modes in graphene-coated nanowire

Yixiao Gao, Guobin Ren, Bofeng Zhu, Huaiqing Liu, Yudong Lian, and Shuisheng Jian
Opt. Express 22(20) 24322-24331 (2014)

Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range

Da Teng, Kai Wang, Zhe Li, and Yongzhe Zhao
Opt. Express 27(9) 12458-12469 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
    [Crossref]
  5. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  6. B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express 19(14), 13150–13157 (2011).
    [Crossref] [PubMed]
  7. D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film,” Opt. Express 20(12), 12866–12876 (2012).
    [Crossref] [PubMed]
  8. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  9. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [Crossref]
  10. J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
    [Crossref] [PubMed]
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  12. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  14. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
    [Crossref] [PubMed]
  15. Y. Wu, B. Yao, A. Zhang, Y. J. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  16. X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
    [Crossref]
  17. X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
    [Crossref]
  18. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  19. M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
    [Crossref]
  20. Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
    [Crossref]
  21. L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Phys. Usp. 51(9), 887–897 (2008).
    [Crossref]
  22. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  23. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  24. M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
    [Crossref] [PubMed]
  25. A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
    [PubMed]
  26. Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29(9), 2559 (2012).
    [Crossref]
  27. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
    [Crossref] [PubMed]
  28. S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
    [Crossref] [PubMed]
  29. M. W. Vogel, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2(1), 021852 (2008).
    [Crossref]
  30. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
    [Crossref]
  31. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
    [Crossref] [PubMed]
  32. A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005).
    [Crossref] [PubMed]
  33. A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
    [Crossref] [PubMed]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vol. 2.

2014 (4)

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. J. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

2013 (6)

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[Crossref] [PubMed]

2012 (3)

D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film,” Opt. Express 20(12), 12866–12876 (2012).
[Crossref] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29(9), 2559 (2012).
[Crossref]

2011 (4)

2010 (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (2)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (4)

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Phys. Usp. 51(9), 887–897 (2008).
[Crossref]

M. W. Vogel, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2(1), 021852 (2008).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

2007 (1)

M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[Crossref]

2005 (3)

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005).
[Crossref] [PubMed]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2002 (1)

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Alonso-González, P.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Arzubiaga, L.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Botello-Méndez, A. R.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Casanova, F.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chacham, H.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Charlier, J. C.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Chen, X.

Chen, Y.

Cheng, Y.

Chiang, K. S.

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Chulhai, D.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Chuvilin, A.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Cui, T. J.

Deckert, V.

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005).
[Crossref] [PubMed]

Desiatov, B.

Dong, Z. G.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Phys. Usp. 51(9), 887–897 (2008).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fischer, U. C.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Fuchs, H.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Gao, J.

Geim, A. K.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Gong, Y.

Goykhman, I.

Gramotnev, D. K.

D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film,” Opt. Express 20(12), 12866–12876 (2012).
[Crossref] [PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[Crossref]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Hao, J.

Hao, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.

He, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

He, Y.

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hersam, M. C.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Höppener, C.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Hu, T. Y.

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Hueso, L. E.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jensen, L.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Jiang, N.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, K. S.

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Klingsporn, J. M.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Levy, U.

Lherbier, A.

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Lin, Z.

Liu, Z.-

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Lu, N.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Lu, W. B.

Maas, H. J.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Mason, D. R.

Matos, M. J.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Mazzoni, M. S.

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Molenda, D.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Naber, A.

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

Ni, Z. H.

Novoselov, K. S.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Peres, N. M. R.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Pozzi, E. A.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Qiu, M.

Rao, Y. J.

Rasmussen, A.

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005).
[Crossref] [PubMed]

Ren, G.

Schnell, M.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Seideman, T.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Sonntag, M. D.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tian, J.-G.

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

M. W. Vogel, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2(1), 021852 (2008).
[Crossref]

M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[Crossref]

Wang, D. N.

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Wang, J.

Wang, Z.

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Wu, Y.

Xu, H. J.

Xu, M.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yan, M.

Yang, M.

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Yang, X.

Yao, B.

Zhang, A.

Zhang, H.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

Zhang, W.

Zhang, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

Zheng, S.

Zhu, B.

Zhu, W.

Anal. Bioanal. Chem. (1)

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. He, Z.- Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

J. M. Klingsporn, N. Jiang, E. A. Pozzi, M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, M. C. Hersam, and R. P. Van Duyne, “Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 136(10), 3881–3887 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[Crossref]

J. Nanophotonics (1)

M. W. Vogel, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2(1), 021852 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. Lherbier, A. R. Botello-Méndez, and J. C. Charlier, “Electronic and transport properties of unbalanced sublattice N-doping in graphene,” Nano Lett. 13(4), 1446–1450 (2013).
[PubMed]

Nanotechnology (1)

M. J. Matos, M. S. Mazzoni, and H. Chacham, “Graphene–boron nitride superlattices: the role of point defects at the BN layer,” Nanotechnology 25(16), 165705 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Lett. A (1)

M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[Crossref]

Phys. Rev. B (1)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Phys. Rev. Lett. (2)

A. Naber, D. Molenda, U. C. Fischer, H. J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Phys. Usp. (1)

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Phys. Usp. 51(9), 887–897 (2008).
[Crossref]

Rev. Mod. Phys. (1)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vol. 2.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The normalized mode areas of fundamental SPs mode on the graphene-coated and metal-coated nanowire waveguides as functions of frequency f (a), nanowire radius R (b), nanowire permittivity εd (c) and chemical potential μc (d). Without specified, the f = 48 THz, R = 120 nm, εd = 2.48 and μc = 1 eV. Cross sections of the two waveguides are shown in the insets of (a) and (b). The normalized electric field amplitudes |E| of the two waveguides under R = 100 nm are shown in the inset of (d), the area is 500 × 500 nm2.
Fig. 2
Fig. 2 The electric fields |E| of the graphene-coated and metal-coated nanowire waveguides as functions of frequency f (a), nanowire radius R (b), nanowire permittivity εd (c) and chemical potential μc (d). Without specified, f = 48 ΤΗz, R = 200 nm, εd = 2.48 and μc = 1 eV.
Fig. 3
Fig. 3 The left-hand side of inequality (a) and the electric fields |E| (b) on the surface of graphene-coated nanowire waveguide under different taper angles. The electric fields |E| of the Ag-coated waveguide are also presented. The f = 48 ΤΗz, r0 = 200 nm, L = 800 nm, εd = 2.48 and μc = 1 eV.
Fig. 4
Fig. 4 The electric fields |E| under two taper angles along the tapered waveguide region (a) and tip region (b). For comparison, the electric fields |E| of Ag-coated probe are shown. Normalized electric fields |E| of the metal-coated (left panel) and graphene-coated (right panel) at the tip are presented in the inset of (a). The schematic of the probe is shown in the inset of (b). The f = 48 ΤΗz, r0 = 200 nm, L = 800 nm, εd = 2.48 and μc = 1 eV.
Fig. 5
Fig. 5 The electric field distributions along the tapered region for the two kinds of probes. The schematic view of the circular aperture probe as well as the normalized |E| field profiles at the ends of the probes with spherical tip (left panel) and circular aperture (right panel) are shown in the inset. The f = 48 THz, r1 = 15 nm, L = 800 nm, α = 13°, εd = 2.48 and μc = 1 eV.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E r ={ iAβ K 0 ( u 2 R) I 1 ( u 1 r)exp(iβz)/ u 1 (r<R) iAβ I 0 ( u 1 R) K 1 ( u 2 r)exp(iβz)/ u 2 (rR)
E z ={ A K 0 ( u 2 R) I 0 ( u 1 r)exp(iβz) (r<R) A K 0 ( u 2 r) I 0 ( u 1 R)exp(iβz) (rR)
H ϕ ={ iAω ε 1 K 0 ( u 2 R) I 1 ( u 1 r)exp(iβz)/ u 1 (r<R) iAω ε 2 I 0 ( u 1 R) K 1 ( u 2 r)exp(iβz)/ u 2 (rR)
iω ε 2 K 1 ( u 2 R) u 2 K 0 ( u 2 R) + iω ε 1 I 1 ( u 1 R) u 1 I 0 ( u 1 R) = σ g

Metrics