Abstract

Here, we demonstrate a chip-scale integrated optical wavelength tracker with fast response and compact format. By exploiting the electro-optic(EO) effect on a thermally controlled silicon micro-ring resonator filter, the proposed tracker can operate over a wide wavelength range according to the thermo-optic (TO) effect; meanwhile, the tracker’s response speed is greatly improved through the EO effect (i.e. tracking within 1 ns), as compared to the traditional TO controlled methods (typical ~10 μs). With the integration of a photodiode onto the photonics chip, the compact chip is with a footprint of 0.5 mm × 1.5 mm. This tracker has potential applications for wavelength tacking in advanced DWDM network systems, tunable laser sources, and high performance optical sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits

Changming Chen, Xiaoyan Niu, Chao Han, Zuosen Shi, Xinbin Wang, Xiaoqiang Sun, Fei Wang, Zhanchen Cui, and Daming Zhang
Opt. Express 22(17) 19895-19911 (2014)

Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators

Tao Chu, Nobuhide Fujioka, and Masashige Ishizaka
Opt. Express 17(16) 14063-14068 (2009)

Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform

Dazeng Feng, Ning-Ning Feng, Cheng-Chih Kung, Hong Liang, Wei Qian, Joan Fong, B. Jonathan Luff, and Mehdi Asghari
Opt. Express 19(7) 6125-6130 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Shinagawa, M. Nishita, T. Sato, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Detailed Investigation on Reliability of Wavelength-Monitor-Integrated Fixed and Tunable DFB Laser Diode Modules,” J. Lightwave Technol. 23(3), 1126–1136 (2005).
    [Crossref]
  2. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Quantum Electron. 15(3), 545–554 (2009).
    [Crossref]
  3. D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
    [Crossref]
  4. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19(6), 5143–5148 (2011).
    [Crossref] [PubMed]
  5. X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
    [Crossref]
  6. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007).
    [Crossref]
  7. H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
    [Crossref]
  8. Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
    [Crossref]
  9. Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
    [Crossref]
  10. R. Aguinaldo, A. Forencich, C. DeRose, A. Lentine, D. C. Trotter, Y. Fainman, G. Porter, G. Papen, and S. Mookherjea, “Wideband silicon-photonic thermo-optic switch in a wavelength-division multiplexed ring network,” Opt. Express 22(7), 8205–8218 (2014).
    [Crossref] [PubMed]
  11. J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
    [Crossref]
  12. H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
    [Crossref]
  13. H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).
  14. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
    [Crossref]
  15. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  16. X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
    [Crossref] [PubMed]
  17. X. G. Tu, T. Y. Liow, J. F. Song, M. B. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
    [Crossref] [PubMed]
  18. P. Dumon, “Ultracompact Integrated Optical Filters in Silcon-on-Insulator by Means of Wafer-Scale Technology,” PhD thesis, Ghent University, Ghent, Belgium (2004).
  19. R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32(1986).
  20. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  21. J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
    [Crossref]

2014 (1)

2013 (3)

X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

2012 (2)

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

2011 (2)

2009 (1)

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Quantum Electron. 15(3), 545–554 (2009).
[Crossref]

2007 (3)

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007).
[Crossref]

Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
[Crossref]

2005 (1)

2004 (1)

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

2000 (1)

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

1999 (1)

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

1998 (1)

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1986 (1)

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32(1986).

Abe, H.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Aguinaldo, R.

Aida, K.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Bennet, B. R.

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32(1986).

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Cai, H.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Chang, J. H.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Chen, Y. J.

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

Chung, Y. C.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

DeRose, C.

Ding, L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Dong, B.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Fainman, Y.

Fang, Q.

Forencich, A.

Hassan, K.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Iodice, M.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Jung, D. K.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Kasukawa, A.

Katagiri, Y.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Khalil, D.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Kwong, D. L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Lentine, A.

Li, C.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Li, H.

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

Li, Z.

Limberger, H. G.

Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
[Crossref]

Lin, J. T.

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Liow, T. Y.

Lipson, M.

Liu, A. Q.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007).
[Crossref]

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

Lo, G. Q.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

X. G. Tu, T. Y. Liow, J. F. Song, M. B. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[Crossref] [PubMed]

Lu, C.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

Luo, X. S.

Matsuo, S.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Quantum Electron. 15(3), 545–554 (2009).
[Crossref]

Mookherjea, S.

Mukaihara, T.

Nagaoka, S.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Nasu, H.

Nishita, M.

Nomura, T.

Ohira, F.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Omran, H.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Papen, G.

Park, M. K.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Porter, G.

Qiu, C.

Sabry, Y. M.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Sadek, M.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Salathé, R.

Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
[Crossref]

Sato, T.

Segawa, T.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Quantum Electron. 15(3), 545–554 (2009).
[Crossref]

Shalaby, M. Y.

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

Shin, S. K.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Shinagawa, T.

Shu, J.

Song, J. F.

Song, J. H.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32(1986).

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Stone, D.

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

Tachikawa, Y.

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

Tang, D. Y.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

Tao, J. F.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Tissot, Y.

Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
[Crossref]

Trotter, D. C.

Tsai, J. M.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Tu, X. G.

Woo, H. G.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Wu, J.

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Xu, Q.

Yang, X.

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

Yu, M. B.

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Zhang, H.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Zhang, J.

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

Zhang, Q. X.

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Zhang, X.

Zhang, X. M.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007).
[Crossref]

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

Zhong, S.

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

Appl. Phys. Lett. (3)

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84(3), 329–331 (2004).
[Crossref]

J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Electron. Lett. (1)

H. Li, S. Zhong, X. Yang, Y. J. Chen, and D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34(22), 2149–2151 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Quantum Electron. 15(3), 545–554 (2009).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. H. Song, J. H. Chang, J. Zhang, H. Zhang, M. K. Park, C. Li, and G. Q. Lo, “Grating coupler embedded silicon platform for hybrid integrated receivers,” IEEE Photon. Technol. Lett. 24(3), 161–163 (2012).
[Crossref]

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-Tracking Technique for Spectrum-Sliced WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Y. Tissot, H. G. Limberger, and R. Salathé, “Ultrawide bandwidth wavelength monitor based on a pair of tilted fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(21), 1702–1704 (2007).
[Crossref]

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, “High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter,” IEEE Photon. Technol. Lett. 11(1), 102–104 (1999).
[Crossref]

H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications,” IEEE Photon. Technol. Lett. 12(1), 37–39 (2013).

J. Lightwave Technol. (2)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

T. Shinagawa, M. Nishita, T. Sato, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Detailed Investigation on Reliability of Wavelength-Monitor-Integrated Fixed and Tunable DFB Laser Diode Modules,” J. Lightwave Technol. 23(3), 1126–1136 (2005).
[Crossref]

J. Micromech. Microeng. (1)

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007).
[Crossref]

Opt. Express (5)

SPIE Integr. Opt. Circuit Eng. (1)

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32(1986).

Other (1)

P. Dumon, “Ultracompact Integrated Optical Filters in Silcon-on-Insulator by Means of Wafer-Scale Technology,” PhD thesis, Ghent University, Ghent, Belgium (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic and working principle of the proposed wavelength tracker with joined electro-optic and thermo-optic effects. (a) Schematic of the wavelength tracking device. (b) Cross-section view of the micro-ring waveguide (WG) in the micro-ring resonator filter. (c) Wavelength tracking principle.
Fig. 2
Fig. 2 (a) SEM image of the fabricated optical wavelength tracker. (b) Zoom view of the tunable micro-ring resonator filter, with P/N-doping and the TiN-heater structures. (c) Schematic cross-section of the tunable micro-ring resonator.
Fig. 3
Fig. 3 Transmission spectra under thermo-optic effect. (a) Resonance wavelengths shift with increasing electrical heating power. Wavelength is changed from 1560.48 nm to 1563.71 nm, and electrical heating power is from 0 to 30 mW with an increasing step of 3.3 mW. (b) The resonance wavelength as a function of electrical heating power.
Fig. 4
Fig. 4 (a) Measured transmission spectra of the tunable micro-ring resonator at different bias currents applied on the p-i-n junction. (b) The resonance wavelength as a function of bias current, together with the numerical fitting line.
Fig. 5
Fig. 5 Wavelength detection and tracking process. (a) Wavelength detection process for a target wavelength of 1560.35 nm. (b) The input wavelength versus the bias current when the input wavelengths are variation around 1560.35 nm.
Fig. 6
Fig. 6 Dynamic change of the transmission in response to injection current change. The rise time (t1) and the relaxation time (t2) of the wavelength are 0.4 ns and 0.3 ns, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T= T min +F sin 2 ( ϕ 2 ) 1+F sin 2 ( ϕ 2 ) P( λ i )
ϕ=2 2π λ i N eff L
Δ N eff =8.8× 10 22 ΔN8.5× 10 18 (ΔP) 0.8 =f( I bias )
λ i = λ 0 +Δ λ e = λ 0 + 1 N eff f( I 1 )

Metrics