Abstract

We investigate an in-line band pass filter, working both for TE and TM polarizations, based on a cross-slot waveguide merged with a Bragg grating and an optical cavity. Different types of cavities (C2- and C4-symmetric) are presented in order to optimize the filtering and make the device dependent or independent on the polarization. We show a strong light confinement in an extremely small volume, which offers an advantage for further sensing applications. Moreover, we show how the inclusion of a silicon nanowire in the cavity helps the guiding and increases the amplitude of the resonance. In this study we make use of both the Fourier Modal Method and the Finite Difference Time Domain method to perform the numerical simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides

Li-Min Chang, Lei Liu, Yuan-Hao Gong, Man-Qing Tan, Yu-De Yu, and Zhi-Yong Li
Appl. Opt. 57(4) 678-683 (2018)

Design of a compact polarization demultiplexer for silicon-based slot waveguides

Yin Xu, Jinbiao Xiao, and Xiaohan Sun
Appl. Opt. 53(35) 8305-8312 (2014)

Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes

Jose Vicente Galan, Pablo Sanchis, Jaime Garcia, Javier Blasco, Alejandro Martinez, and Javier Martí
Appl. Opt. 48(14) 2693-2696 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  4. S. Noda and T. Baba, Roadmap on Photonic Crystals (Springer, 2003).
    [Crossref]
  5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
    [Crossref]
  6. J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
    [Crossref]
  7. J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
    [Crossref] [PubMed]
  8. A. Khanna, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Control of optical mode properties in cross-slot waveguides,” Appl. Opt. 48, 6547–6552 (2009).
    [Crossref] [PubMed]
  9. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
    [Crossref]
  10. X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
    [Crossref]
  11. B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
    [Crossref]
  12. P. Stenberg, M. Roussey, P. Ryczkowski, G. Genty, S. Honkanen, and M. Kuittinen, “A merged photonic crystal slot waveguide embedded in ALD-TiO2,” Opt. Express 21, 24154–24162 (2013).
    [Crossref] [PubMed]
  13. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  14. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  15. J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
    [Crossref]
  16. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett. 37, 2295–2297 (2012).
    [Crossref] [PubMed]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain (Artech House, 2000).
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
    [Crossref]
  19. J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
    [Crossref]
  20. M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
    [Crossref]
  21. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
    [Crossref]
  22. M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
    [Crossref]

2013 (1)

2012 (1)

2011 (1)

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

2010 (2)

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

2009 (2)

2008 (1)

J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
[Crossref]

2005 (2)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
[Crossref]

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

2004 (2)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref] [PubMed]

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

1997 (1)

1996 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

1979 (1)

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

Agrawal, G. P.

Allred, D. D.

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

Almeida, V. R.

Ang, S. S. N.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

Baba, T.

S. Noda and T. Baba, Roadmap on Photonic Crystals (Springer, 2003).
[Crossref]

Bai, B.

J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
[Crossref]

Barrios, C. A.

Blasco, J.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Booth, D. C.

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

Brimont, A.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Chew, A. B.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Del Villar, I.

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Efavi, J.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Galan, J. V.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Garcia, J.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Genty, G.

Gottlob, H.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain (Artech House, 2000).

Henschel, W.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Honkanen, S.

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Hugonin, J. P.

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Ip, L. T.

B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
[Crossref]

Janai, M.

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Kejalakshmy, N.

B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
[Crossref]

Khanna, A.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Kuittinen, M.

Kurz, H.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Lalanne, P.

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Lemme, M. C.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Leung, D. M. H.

B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Li, L.

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Lipson, M.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Marti, J.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Martinez, A.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Martinez, J. M.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Matias, I. R.

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Mei, T.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

Mollenhauer, T.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Noda, S.

S. Noda and T. Baba, Roadmap on Photonic Crystals (Springer, 2003).
[Crossref]

Premaratne, M.

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
[Crossref]

Rahman, B. M. A.

B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
[Crossref]

Roussey, M.

Rukhlenko, I. D.

Ryczkowski, P.

Sanchis, P.

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696 (2009).
[Crossref] [PubMed]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

Säynätjoki, A.

Seraphin, B. O.

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

Stenberg, P.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain (Artech House, 2000).

Teng, J.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

Tervo, J.

J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
[Crossref]

Tervonen, A.

Tu, X.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

Turunen, I. A.

J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
[Crossref]

Welch, C.

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Xu, Q.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett. 22, 1324–1326 (2010).
[Crossref]

J. Appl. Phys. (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Eur. Opt. Soc. Rapid Publ. 3, 08004 (2008).
[Crossref]

J. Opt. Soc. Am. A (2)

Microelectron. Eng. (1)

M. C. Lemme, T. Mollenhauer, H. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of triple-gate nano-scale SOI-MOSFETs,” Microelectron. Eng. 73–74, 346–350 (2004).
[Crossref]

Nat. Photon. (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. P. Hugonin, P. Lalanne, I. Del Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Solar Energy Mat. (1)

M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, “Optical properties and structure of amorphous silicon films prepared by CVD,” Solar Energy Mat. 1, 11–27 (1979).
[Crossref]

Other (5)

S. Noda and T. Baba, Roadmap on Photonic Crystals (Springer, 2003).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain (Artech House, 2000).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

J. V. Galan, P. Sanchis, J. Garcia, A. Martinez, J. Blasco, J. M. Martinez, A. Brimont, and J. Marti, “Silicon cross-slot waveguides insensitive to polarization,” in IEEE/LEOS Winter Topicals Meeting Series (2009), pp. 32–33.
[Crossref]

B. M. A. Rahman, D. M. H. Leung, N. Kejalakshmy, and L. T. Ip, “Novel silicon cross-slot optical waveguide for polarization diversity applications,” in Advanced Photonics 2013, X. Liu, C. Lu, W. Shieh, J. Cartledge, S. Savory, and C. Xie, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JT3A.22.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) 3D sketch of the structure. The structure is made of silicon and the surrounding material is silicon dioxide. b) Top or side view of the structure. We define WS as the slot width, WR the rail width, D the period, F = d/D the fill factor, and LC the cavity length. c) Cross sections (plane P) of the different cavities. Type I: no silicon block in the cavity; type II: horizontal block in the middle of the slot waveguide (C2); type III: vertical block (C2); type IV: silicon block in the center of the cross-slot waveguide (C4); type V: cross silicon block with an aperture in the middle (C4); Type VI: cross silicon block (C4).
Fig. 2
Fig. 2 a) Effective index neff of the fundamental slot mode in the structure as a function of the rail width WR for one polarization calculated at λ = 1550 nm. b) Wavelength dependence of the confinement factor (CF) in the slot region (blue curves) and in the rails (red curves) for three different rail widths: WR = 180 nm (solid curves), WR = 165 nm (dashed curves), and WR = 150 nm (dotted curves). c) and d) Evolution of the effective area (Aeff) and the confinement factor respectively, as a function of WR. The black curve with squares represents the ratio between A eff S and A eff R calculated at λ = 1550 nm. The green lines represent the chosen parameters (a, c and d). The green area (b) represents the position of the photonic band gap after inclusion of a photonic crystal in the structure.
Fig. 3
Fig. 3 Distributions of the z-component of the Poynting vector in a cross section plane of a cross-slot waveguide. Comparison between the calculation using the Finite Difference Time Domain (FDTD) (a, c, and e) method and the Fourier Modal Method (FMM) (b, d, and f) for the TM (a and d), TE (b and e) and unpolarized light (c and f) cases. The cross section of the structure is highlighted with blue lines.
Fig. 4
Fig. 4 Transmission spectrum (calculation made for the TE polarization) of the structure without a cavity. The three insets are the distribution of the z-component of the Poynting vector at the output of the photonic crystal at the wavelengths λ = 1250 nm, λ = 1500 nm, and λ = 1800 nm.
Fig. 5
Fig. 5 Transmission spectra through the device for the different cavity types and polarizations (TE: solid lines; TM: circles) normalized by the transmission spectrum of the photonic band gap structure without a cavity. a) C4-symmetric cavity types I (blue curves), IV (green curves), V (red curves) and VI (black curves). Type I and IV are almost superimposed. In all cases, responses for TE and TM are identical. b) C2-symmetric cavity types II (blue curves) and III (red curves). Responses for TE and TM are reversed for the type II and III.
Fig. 6
Fig. 6 Distribution of the z-component of the Poynting vector, at the resonant wavelength, in the plane P (center of the cavity, figure 1a) for the six cavity types and for TE and TM polarized and unpolarized light. The contour of the Silicon sub-structures standing in the cavity is superimposed to the pictures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A eff Region = a Region + P z ( x , y ) d x d y Region P z ( x , y ) d x d y ,
CF Region = a Region A eff Region × 100 ,

Metrics