Abstract

Mid-infrared supercontinuum generation (SCG) is mostly studied in fluoride glass fibers in which long fibers and high power pump sources are needed. Taking advantages of high nonlinearity and transparency, chalcogenide glass is also applied for SCG in mid-infrared region, where specific strategy is needed to compensate large normal material dispersion. We investigate multimaterial fibers (MMFs) combined with fluoride and chalcogenide glasses for SCG. The high refraction contrast allows the zero dispersion point of the fiber to shift to below 2 μm without air holes. These two materials have similar glass transition temperatures and thermal expansion coefficients. They are possible to be drawn together. Both step-index MMFs and microstructured MMFs (MS-MMFs) are considered. The chromatic dispersions and supercontinuum spectra are studied. A 20 dB bandwidth of over one octave SCG with high coherence can be obtained from a 1 cm MS-MMF at 1.95 μm with a pumping peak power of 175 W. As the pump power increased, the spectrum can extend to 5 μm. In this scheme the fiber is so short that the high level of loss, which is the feature of MMFs, will not cause problems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation

Soroush Shabahang, Guangming Tao, Michael P. Marquez, Honghua Hu, Trenton R. Ensley, Peter J. Delfyett, and Ayman F. Abouraddy
J. Opt. Soc. Am. B 31(3) 450-457 (2014)

Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang
Opt. Express 22(4) 3959-3967 (2014)

Highly coherent supercontinuum in the mid-infrared region with cascaded tellurite and chalcogenide fibers

Hoa Phuoc Trung Nguyen, Kenshiro Nagasaka, Tong Hoang Tuan, Than Singh Saini, Xing Luo, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 57(21) 6153-6163 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  3. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  4. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [Crossref]
  5. A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
    [Crossref]
  6. A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
    [Crossref]
  7. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  8. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
    [Crossref]
  9. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics. (Springer Verlag, The Netherlands, 2008).
  10. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
    [Crossref]
  11. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  12. M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
    [Crossref]
  13. S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
    [Crossref]
  14. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
    [Crossref]
  15. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  16. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
    [Crossref] [PubMed]
  17. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
    [Crossref] [PubMed]
  18. D. Tran, G. Sigel, and B. Bendow, “Heavy-metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), 566–586 (1984).
    [Crossref]
  19. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref] [PubMed]
  20. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007).
    [Crossref] [PubMed]
  21. G. S. Qin, X. Yan, C. Kito, M. S. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.
  22. L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19(11), 10041–10048 (2011).
    [Crossref] [PubMed]
  23. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref] [PubMed]
  24. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  25. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon Rev 7(5), 628–645 (2013).
    [Crossref] [PubMed]
  26. L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
    [Crossref]
  27. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  28. H. Chen, Z. Chen, X. Zhou, and J. Hou, “Cascaded PCF tapers for flat broadband supercontinuum generation,” Chin. Opt. Lett. 10(12), 120603 (2012).
    [Crossref]
  29. J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
    [Crossref]
  30. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
    [Crossref]
  31. A. Marandi, C. W. Rudy, N. C. Leindecker, V. G. Plotnichenko, E. Dianov, K. Vodopyanov, and R. L. Byer, “Mid-Infrared Supercontinuum Generation from 2.4 µm to 4.6 µm in Tapered Chalcogenide Fiber,” in CLEO: Science and Innovations, Technical Digest (online) (Optical Society of America, 2012), paper: CTh4B.5.
  32. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref] [PubMed]
  33. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref] [PubMed]
  34. X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
    [Crossref] [PubMed]
  35. R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
    [Crossref]
  36. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
    [Crossref] [PubMed]
  37. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
    [Crossref]
  38. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  39. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [Crossref] [PubMed]
  40. T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
    [Crossref] [PubMed]
  41. C. Chaudhari, M. S. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications,” J. Lightwave Technol. 30(13), 2069–2076 (2012).
    [Crossref]
  42. J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
    [Crossref]
  43. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30(25), 3656–3660 (1991).
    [Crossref] [PubMed]
  44. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 µm,” Appl. Opt. 39(27), 4979–4984 (2000).
    [Crossref] [PubMed]
  45. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
    [Crossref] [PubMed]
  46. T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28(9), 2284–2290 (2011).
    [Crossref]
  47. P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
    [Crossref]
  48. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [Crossref]
  49. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
    [Crossref]
  50. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Raman response function and supercontinuum generation in chalcogenide fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008), paper CMDD2.
    [Crossref]
  51. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18(8), 8647–8659 (2010).
    [Crossref] [PubMed]
  52. S. Wang, J. Hu, H. Guo, and X. Zeng, “Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths,” Opt. Express 21(3), 3067–3072 (2013).
    [Crossref] [PubMed]
  53. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
    [Crossref]
  54. M. Liao, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation,” J. Lightwave Technol. 29(2), 194–199 (2011).
    [Crossref]
  55. M. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A highly nonlinear tellurite microstructured fiber pumped by picosecond pulse for supercontinuum generation,” in Proceedings of IEEE Optoelectronics and Communications Conference (IEEE, 2010), pp. 160–161.
  56. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]

2014 (5)

2013 (7)

S. Wang, J. Hu, H. Guo, and X. Zeng, “Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths,” Opt. Express 21(3), 3067–3072 (2013).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon Rev 7(5), 628–645 (2013).
[Crossref] [PubMed]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
[Crossref]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
[Crossref] [PubMed]

2012 (7)

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

H. Chen, Z. Chen, X. Zhou, and J. Hou, “Cascaded PCF tapers for flat broadband supercontinuum generation,” Chin. Opt. Lett. 10(12), 120603 (2012).
[Crossref]

X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

C. Chaudhari, M. S. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications,” J. Lightwave Technol. 30(13), 2069–2076 (2012).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (2)

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18(8), 8647–8659 (2010).
[Crossref] [PubMed]

2009 (4)

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[Crossref] [PubMed]

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
[Crossref] [PubMed]

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2007 (7)

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
[Crossref] [PubMed]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (1)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2002 (1)

2000 (3)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 µm,” Appl. Opt. 39(27), 4979–4984 (2000).
[Crossref] [PubMed]

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

1991 (1)

1987 (1)

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

1986 (1)

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
[Crossref]

1984 (1)

D. Tran, G. Sigel, and B. Bendow, “Heavy-metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[Crossref]

1977 (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Abouraddy, A. F.

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Agarwal, A.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Aggarwal, I.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30(25), 3656–3660 (1991).
[Crossref] [PubMed]

Alexander, V. V.

Amzajerdian, F.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Arnold, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Askins, C.

Bang, O.

Barnes, B. W.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Barney, E.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Bartelt, H.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Bendow, B.

D. Tran, G. Sigel, and B. Bendow, “Heavy-metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Benson, T.

Benson, T. M.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Beyon, J. Y.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Bookey, H. T.

Boppart, S. A.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon Rev 7(5), 628–645 (2013).
[Crossref] [PubMed]

Boudebs, G.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

Brandon Shaw, L.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Brilland, L.

Buczynski, R.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Bushong, E. J.

Butterworth, J. H.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Carlie, N.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Cerullo, G.

Chan, A.

Chang, W.

Chaudhari, C.

Chen, D.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

Chen, H.

H. Chen, Z. Chen, X. Zhou, and J. Hou, “Cascaded PCF tapers for flat broadband supercontinuum generation,” Chin. Opt. Lett. 10(12), 120603 (2012).
[Crossref]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Chen, S.

Chen, Z.

Cheng, M.-Y.

Cheng, T.

Chiodo, N.

Choi, D.-Y.

Chrissanthopoulos, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Colombo, L.

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Couderc, V.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Coulombier, Q.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Delfyett, P. J.

Deng, D.

Duan, Z.

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

El Amraoui, M.

Ensley, T. R.

Fercher, A. F.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
[Crossref]

Fermann, M. E.

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Fita, P.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Freeman, M. J.

Furniss, D.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Gai, X.

Galvanauskas, A.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Gao, W.

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

Gao, Y.

Gattass, R. R.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Gaylord, S.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Granzow, N.

Guan, S.

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

Guo, H.

Guo, Y.

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Hartl, I.

Hegde, R. S.

Hilaire, S.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Hou, J.

Hu, H.

Hu, J.

S. Wang, J. Hu, H. Guo, and X. Zeng, “Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths,” Opt. Express 21(3), 3067–3072 (2013).
[Crossref] [PubMed]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Hu, L.

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

Huang, F.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

Huss, G.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Islam, M. N.

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Jain, R.

Jayasuriya, D.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Jewell, J. M.

Jha, A.

Joannopoulos, J. D.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Kanou, Y.

Kar, A. K.

Kavaya, M. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Kawashima, H.

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

Kimerling, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Kito, C.

Klocek, P.

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Kobelke, J.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Koch, G. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Kohoutek, T.

Kubat, I.

Kujawa, I.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Labruyere, A.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Lee, K. F.

Leproux, P.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Li, Q. Q.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Li, W.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

Liao, M.

Liao, M. S.

Lin, A.

Liu, L.

Liu, X.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

Luther-Davies, B.

Madden, S.

Marquez, M. P.

Massera, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Matsumoto, M.

Maze, G.

Mazé, G.

Méchin, D.

Melin, G.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Messaddeq, Y.

Michalska, M.

Misumi, T.

Møller, U. V.

Moneim, N. A.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Moselund, P. M.

Naftaly, M.

Neelakandan, M.

Nowosielski, J.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ohishi, Y.

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

C. Chaudhari, M. S. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications,” J. Lightwave Technol. 30(13), 2069–2076 (2012).
[Crossref]

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28(9), 2284–2290 (2011).
[Crossref]

M. Liao, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation,” J. Lightwave Technol. 29(2), 194–199 (2011).
[Crossref]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A highly nonlinear tellurite microstructured fiber pumped by picosecond pulse for supercontinuum generation,” in Proceedings of IEEE Optoelectronics and Communications Conference (IEEE, 2010), pp. 160–161.

Orf, N.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Osellame, R.

Pawlowska, M.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Petersen, C. R.

Petit, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Petros, M.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

Poulain, M.

Psaila, N. D.

Pysz, D.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Qin, G.

Qin, G. S.

M. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A highly nonlinear tellurite microstructured fiber pumped by picosecond pulse for supercontinuum generation,” in Proceedings of IEEE Optoelectronics and Communications Conference (IEEE, 2010), pp. 160–161.

Qin, W.

Radzewicz, C.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Ranka, J. K.

Richardson, K.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Roth, E.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
[Crossref]

Russell, P. S. J.

Sanghera, J.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Sanghera, J. S.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, M. A.

Schuster, K.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Seddon, A.

Seddon, A. B.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

Shabahang, S.

Shapira, O.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Shaw, L. B.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Shen, S.

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Shiosaka, T. W.

Sigel, G.

D. Tran, G. Sigel, and B. Bendow, “Heavy-metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[Crossref]

Singh, U. N.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Skorobogatiy, M.

Sorin, F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Stentz, A. J.

Stepien, R.

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Sujecki, S.

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Suzuki, T.

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

C. Chaudhari, M. S. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications,” J. Lightwave Technol. 30(13), 2069–2076 (2012).
[Crossref]

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28(9), 2284–2290 (2011).
[Crossref]

M. Liao, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation,” J. Lightwave Technol. 29(2), 194–199 (2011).
[Crossref]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A highly nonlinear tellurite microstructured fiber pumped by picosecond pulse for supercontinuum generation,” in Proceedings of IEEE Optoelectronics and Communications Conference (IEEE, 2010), pp. 160–161.

Swiderski, J.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Tang, Y.

Tao, G.

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Terry, F. L.

Thomson, R. R.

Tian, Q.

Tian, Y.

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

Tombelaine, V.

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

Toulouse, J.

Toupin, P.

Tran, D.

D. Tran, G. Sigel, and B. Bendow, “Heavy-metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[Crossref]

Troles, J.

Tu, H.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon Rev 7(5), 628–645 (2013).
[Crossref] [PubMed]

Ung, B.

Viens, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Wang, L.

Wang, R.

Wang, S.

Windeler, R. S.

Winful, H. G.

Wondraczek, L.

Xia, C.

Xu, J.

Xue, X.

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Yan, X.

Yang, C.

Yang, J.

Yang, Z.

Yannopoulos, S. N.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Yu, J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Zeng, X.

Zhang, A.

Zhang, J.

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

Zhao, D.

Zhao, J.

Zhong, Z.

Zhou, X.

Zhu, X.

Adv. Mater. (1)

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19(22), 3872–3877 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Chin. Opt. Lett. (3)

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7-μm laser materials,” Chin. Opt. Lett. 10(7), 71603–71607 (2012).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-μm emission,” Chin. Opt. Lett. 12(5), 51601–51604 (2012).
[Crossref]

H. Chen, Z. Chen, X. Zhou, and J. Hou, “Cascaded PCF tapers for flat broadband supercontinuum generation,” Chin. Opt. Lett. 10(12), 120603 (2012).
[Crossref]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

I. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Labruyere, P. Leproux, V. Couderc, V. Tombelaine, J. Kobelke, K. Schuster, H. Bartelt, S. Hilaire, G. Huss, and G. Melin, “Structured-core GeO2-doped photonic-crystal fibers for parametric and supercontinuum generation,” IEEE Photon. Technol. Lett. 22(16), 1259–1261 (2010).
[Crossref]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16(4), 1065–1067 (2004).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (2)

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Solid State Chem. (1)

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Laser Photon Rev (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon Rev 7(5), 628–645 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett. 10(3), 036002 (2013).
[Crossref]

Nat. Mater. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Eng. (1)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Opt. Express (12)

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21(7), 7851–7857 (2013).
[Crossref] [PubMed]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007).
[Crossref] [PubMed]

L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19(11), 10041–10048 (2011).
[Crossref] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18(8), 8647–8659 (2010).
[Crossref] [PubMed]

S. Wang, J. Hu, H. Guo, and X. Zeng, “Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths,” Opt. Express 21(3), 3067–3072 (2013).
[Crossref] [PubMed]

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Photon. Res. (2)

Proc. SPIE (4)

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

R. Buczynski, D. Pysz, I. Kujawa, P. Fita, M. Pawlowska, J. Nowosielski, C. Radzewicz, and R. Stepien, “Silicate all-solid photonic crystal fibers with a glass high index contrast,” Proc. SPIE 6588, 658802 (2007).
[Crossref]

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
[Crossref]

J. H. Butterworth, D. Jayasuriya, Q. Q. Li, D. Furniss, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, J. S. Sanghera, and A. B. Seddon, “Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber,” Proc. SPIE 8938, 89380W (2014).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Other (5)

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics. (Springer Verlag, The Netherlands, 2008).

A. Marandi, C. W. Rudy, N. C. Leindecker, V. G. Plotnichenko, E. Dianov, K. Vodopyanov, and R. L. Byer, “Mid-Infrared Supercontinuum Generation from 2.4 µm to 4.6 µm in Tapered Chalcogenide Fiber,” in CLEO: Science and Innovations, Technical Digest (online) (Optical Society of America, 2012), paper: CTh4B.5.

G. S. Qin, X. Yan, C. Kito, M. S. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

M. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “A highly nonlinear tellurite microstructured fiber pumped by picosecond pulse for supercontinuum generation,” in Proceedings of IEEE Optoelectronics and Communications Conference (IEEE, 2010), pp. 160–161.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Raman response function and supercontinuum generation in chalcogenide fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008), paper CMDD2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Material dispersion of GSS and ZBLAN; (b) Total GVD of the step-index fiber with a chalcogenide core and fluoride cladding. The radius of core reduces from 1.2 μm to 0.5 μm.
Fig. 2
Fig. 2 Evolution of the pulse in the time and frequency domains with (a, b) 50 fs, (c, d) 100 fs and (e, f) 300 fs pump pulse duration. The peak power is maintained at 175 W. The upper graphs show the temporal evolution and the bottom graphs show spectral evolution.
Fig. 3
Fig. 3 (a) Spectrum and coherence properties of SCG in the step-index MMF with 175 W peak power and 300 fs pumping. (b) Spectrum and coherence properties of SCG in the step-index MMF with 175 W peak power and 100 fs pumping
Fig. 4
Fig. 4 Cross section of the MS-MMF. di (i = 3 to 6) are the same in our study.
Fig. 5
Fig. 5 (a) Dispersion profile with fi (i = 1 to 6) = 0.9, core = (0.9, 1.0, 1.1 and 1.2) μm. (b) Dispersion profile with core of 1 μm and fi (i = 1 to 6) changing from 0.95 to 0.8. Insert in (b) shows the calculated effective area of the fundamental mode. (c) Dispersion profile with f2 changed while all the other geometric parameters kept constant. (d) Dispersion profile with f3 changed while all the other geometric parameters kept constant.
Fig. 6
Fig. 6 (a) Slight tailoring of the MS-MMF to realize all normal GVD. The black line with a core of 1.0 μm and the structural ratio of the two inner layers f1 = f2 = 0.88 and the outer structural ratio fi (i = 3 to 6) = 0.95 is chosen for further study. (b) Mode field distribution at the pumping wavelength.
Fig. 7
Fig. 7 Evolution of the pulse in the time and frequency domains with (a, b) 50 fs, (c, d) 100 fs and (e, f) 300 fs pump pulse duration. The peak power is maintained at 175 W. The upper graphs show the temporal evolution and the bottom graphs show spectral evolution.
Fig. 8
Fig. 8 (a) Degree of coherence and spectrum for 100 fs and 175W pump conditions. (b) Spectra obtained under different pump powers while keeping the pulse duration as 100 fs.

Tables (1)

Tables Icon

Table 1 Thermal and optical properties of different glasses

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n( λ )= 1+ b 1 × λ 2 λ 2 c 1 + b 2 × λ 2 λ 2 c 2 + b 3 × λ 2 λ 2 c 3 2
D( λ )= 2πc λ 2 β 2 = λ c d 2 n eff( λ ) d λ 2
A z = α 2 A n2 β n i n1 n! n t n A+iγ( 1 f R )( | A | 2 A 2i ω 0 t ( | A | 2 A ) ) +iγ f R (1+ i ω 0 t )( A 0 h R ( τ ) | A( tτ ) | 2 dτ )
γ= 2π λ n 2 A eff = 2π λ n 2 (x,y)| F(x,y) | 4 dxdy ( n 2 (x,y)| F(x,y) | 2 dxdy) 2
h R (t)= τ 1 2 + τ 2 2 τ 1 τ 2 2 exp( t τ 2 )sin( t τ 1 )
| g 12 (1) (λ, t 1 t 2 ) |=| E 1 * (λ, t 1 ) E 2 (λ, t 2 ) [ | E 1 (λ, t 1 ) | 2 | E 2 (λ, t 2 ) | 2 ] 1/2 |

Metrics