Abstract

We demonstrate experimentally the quantum frequency down-conversion of a bright amplitude-squeezed optical field via a high efficiency difference frequency generation process. 532 nm amplitude-squeezed light with squeezing of 1.0 dB is successfully translated to 810 nm amplitude-squeezed light with squeezing of 0.8 dB. The effects of amplitude and phase fluctuations of the pump field on the frequency conversion are investigated both theoretically and experimentally. It is shown that the quantum frequency down-conversion is insensitive to small amplitude fluctuations of the pump field at the optimal conversion point. However, the phase fluctuations of the pump field can lead to increase of noise in the phase quadrature of the down-converted field. To eliminate the additive phase noise, a dual frequency down-converter which utilizing common pump field is proposed and demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency conversion of continuous variable quantum states

Yongmin Li and Kuanshou Zhang
J. Opt. Soc. Am. B 25(2) 269-273 (2008)

Simultaneous experimental generation of vacuum squeezing and bright amplitude squeezing from a frequency doubler

Yu Luo, Ying Li, Changde Xie, Qing Pan, and Kunchi Peng
Opt. Lett. 30(12) 1491-1493 (2005)

Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line

Liang Wu, Yanhong Liu, Ruijie Deng, Zhihui Yan, Xiaojun Jia, and Kunchi Peng
J. Opt. Soc. Am. B 33(11) 2296-2301 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
    [Crossref] [PubMed]
  2. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24(2), 295–299 (2007).
    [Crossref]
  3. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  4. L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
    [Crossref]
  5. G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
    [Crossref] [PubMed]
  6. M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B 23(5), 918–924 (2006).
    [Crossref]
  7. H. Takesue, “Erasing Distinguishability Using Quantum Frequency Up-Conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
    [Crossref] [PubMed]
  8. M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
    [Crossref]
  9. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 013833 (2010).
    [Crossref]
  10. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
    [Crossref] [PubMed]
  11. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010).
    [Crossref] [PubMed]
  12. M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
    [Crossref] [PubMed]
  13. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19(13), 12825–12836 (2011).
    [Crossref] [PubMed]
  14. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
    [Crossref] [PubMed]
  15. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
    [Crossref]
  16. C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
    [Crossref]
  17. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
    [Crossref] [PubMed]
  18. Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
    [Crossref] [PubMed]
  19. S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  20. A. Furusawa and N. Takei, “Quantum teleportation for continuous variables and related quantum information processing,” Phys. Rep. 443(3), 97–119 (2007).
    [Crossref]
  21. X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
    [Crossref]
  22. T. C. Ralph and P. K. Lam, “A bright future for quantum communications,” Nat. Photonics 3(12), 671–673 (2009).
    [Crossref]
  23. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
    [Crossref]
  24. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
    [Crossref]
  25. J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
    [Crossref] [PubMed]
  26. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
    [Crossref] [PubMed]
  27. M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
    [Crossref] [PubMed]
  28. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
    [Crossref] [PubMed]
  29. P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
    [Crossref]
  30. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78(2), 023819 (2008).
    [Crossref]

2014 (1)

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

2012 (5)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

2011 (2)

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19(13), 12825–12836 (2011).
[Crossref] [PubMed]

2010 (6)

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010).
[Crossref] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 013833 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

2009 (2)

T. C. Ralph and P. K. Lam, “A bright future for quantum communications,” Nat. Photonics 3(12), 671–673 (2009).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

2008 (3)

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78(2), 023819 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

H. Takesue, “Erasing Distinguishability Using Quantum Frequency Up-Conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
[Crossref] [PubMed]

2007 (3)

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24(2), 295–299 (2007).
[Crossref]

A. Furusawa and N. Takei, “Quantum teleportation for continuous variables and related quantum information processing,” Phys. Rep. 443(3), 97–119 (2007).
[Crossref]

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

2006 (1)

2005 (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

2003 (1)

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
[Crossref] [PubMed]

1992 (1)

J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

1991 (1)

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

1986 (1)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

1985 (1)

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Aspect, A.

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Baune, C.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Becher, C.

Blumoff, J. Z.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Curtz, N.

Davanço, M.

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

De Martini, F.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
[Crossref] [PubMed]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

Ding, Y.

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Fedrizzi, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Fiurášek, J.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Furusawa, A.

A. Furusawa and N. Takei, “Quantum teleportation for continuous variables and related quantum information processing,” Phys. Rep. 443(3), 97–119 (2007).
[Crossref]

Galatola, P.

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Giorgi, G.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
[Crossref] [PubMed]

Gisin, N.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Hayashi, M.

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

Hiroshima, T.

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

Höfling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Huang, J. M.

J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Kennedy, T. A. B.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kumar, P.

J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Kuzmich, A.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Kwiat, P. G.

Lam, P. K.

T. C. Ralph and P. K. Lam, “A bright future for quantum communications,” Nat. Photonics 3(12), 671–673 (2009).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

Lenhard, A.

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Loock, P. V.

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Lugiato, L. A.

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

Ma, L. J.

L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Mataloni, P.

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
[Crossref] [PubMed]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

McKinstrie, C. J.

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Mejling, L.

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Ou, Z. Y.

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010).
[Crossref] [PubMed]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78(2), 023819 (2008).
[Crossref]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

Porreca, M. G.

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

Radnaev, A. G.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Rakher, M. T.

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

T. C. Ralph and P. K. Lam, “A bright future for quantum communications,” Nat. Photonics 3(12), 671–673 (2009).
[Crossref]

Ramelow, S.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

Raymer, M. G.

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

Reid, M.

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Rottwitt, K.

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

Samblowski, A.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Schnabel, R.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B 23(5), 918–924 (2006).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Simon, C.

Slattery, O.

L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Srinivasan, K.

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Takei, N.

A. Furusawa and N. Takei, “Quantum teleportation for continuous variables and related quantum information processing,” Phys. Rep. 443(3), 97–119 (2007).
[Crossref]

Takesue, H.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 013833 (2010).
[Crossref]

H. Takesue, “Erasing Distinguishability Using Quantum Frequency Up-Conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
[Crossref] [PubMed]

Tang, X.

L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Thew, R.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Tombesi, P.

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

Tomita, A.

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

VanDevender, A. P.

Vollmer, C. E.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Wang, X. B.

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Wong, F. N. C.

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

Zaske, S.

Zbinden, H.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Zeilinger, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

Zhao, R.

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

M. T. Rakher, L. J. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

T. C. Ralph and P. K. Lam, “A bright future for quantum communications,” Nat. Photonics 3(12), 671–673 (2009).
[Crossref]

Nature (3)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85(1), 95–103 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (3)

L. J. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

A. Furusawa and N. Takei, “Quantum teleportation for continuous variables and related quantum information processing,” Phys. Rep. 443(3), 97–119 (2007).
[Crossref]

X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448(1-4), 1–111 (2007).
[Crossref]

Phys. Rev. A (5)

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 013845 (2012).
[Crossref]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85(5), 053829 (2012).
[Crossref]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, “Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,” Phys. Rev. A 32(3), 1550–1562 (1985).
[Crossref] [PubMed]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78(2), 023819 (2008).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 013833 (2010).
[Crossref]

Phys. Rev. Lett. (8)

M. T. Rakher, L. J. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett. 107(8), 083602 (2011).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57(6), 691–694 (1986).
[Crossref] [PubMed]

J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

G. Giorgi, P. Mataloni, and F. De Martini, “Frequency Hopping in Quantum Interferometry: Efficient Up-Down Conversion for Qubits and Ebits,” Phys. Rev. Lett. 90(2), 027902 (2003).
[Crossref] [PubMed]

H. Takesue, “Erasing Distinguishability Using Quantum Frequency Up-Conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
[Crossref] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105(26), 260502 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (3)

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup. SHG, second harmonic generation; BS, beamsplitter; DBS, dichroic beamsplitter; DFG1, DFG2, difference frequency generation device; HWP, half waveplate; PBS, polarizing beamsplitter; F, filters; PD, photodiode, PM1, PM2, phase modulators.
Fig. 2
Fig. 2 (a) Frequency down-conversion efficiency of a weak 532 nm input field versus the 1550 nm pump power. The solid square is the experimental values and the solid line is the theoretical fitting. (b) Output power of 810 nm light as a function of input 532 nm power. The solid square is the experimental data and the solid line is a linear fit to the data.
Fig. 3
Fig. 3 Amplitude quadrature noise spectrum for the input squeezed state at 532 nm (a) and for the frequency down-converted quantum state at 810 nm (b), the solid line is the theoretical fitting. (i) Quantum noise limit; (ii) Amplitude quadrature noise. The resolution and video bandwidths of the spectrum analyzer are 120 kHz and 30 Hz, respectively.
Fig. 4
Fig. 4 The added amplitude noise to the 810 nm light field versus the pump offset Δ. The solid square is the experimental data and the solid line is the theoretical simulations.
Fig. 5
Fig. 5 Wigner functions of the frequency down-converted 810 nm quantum state when only the pump field of the DFG1 is phase modulated (a), and the pump fields of the two DFGs are phase modulated simultaneously (b). The corresponding quadrature noise power is displayed in (c) and (d), (i) Quantum noise limit; (ii) Quadrature noise power.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

a ^ c,out = a ^ c,in cos(| k A p |τ)+ e iϕ a ^ i,in sin(| k A p |τ),
a ^ i,out = a ^ i,in cos(| k A p |τ) e iϕ a ^ c,in sin(| k A p |τ),
a ^ c,out = a ^ c,in sinΔ+ e iϕ a ^ i,in cosΔ,
a ^ i,out = a ^ i,in sinΔ e iϕ a ^ c,in cosΔ.
δ a ^ c,out =δ a ^ c,in sinΔδΔ a ^ c,in cosΔ + e i ϕ [ δ a ^ i,in cosΔiδϕ a ^ i,in cosΔδΔ a ^ i,in sinΔ ].
X ^ c = 1 2 ( a ^ c e i ϕ + a ^ c e i ϕ ) Y ^ c = 1 2i ( a ^ c e i ϕ a ^ c e i ϕ ) , X ^ i = 1 2 ( a ^ i + a ^ i ) Y ^ i = 1 2i ( a ^ i a ^ i ) , X p = 1 2 ( A p e i ϕ p + A p * e i ϕ p ) Y p = 1 2i ( A p e i ϕ p A p * e i ϕ p ) ,
δΔ π 2 δ X p | A p 0 | , δϕ=δ ϕ p δ Y p /| A p |,
δ X ^ c,out = 1 2 [ δ a ^ c,out e i ϕ +δ a ^ c,out e i ϕ ] =sinΔδ X ^ c,in δΔcosΔ X ^ c,in +cosΔδ X ^ i,in δΔsinΔ X ^ i,in +δ ϕ p cosΔ Y ^ i,in ,
δ Y ^ c,out = 1 2i [ δ a ^ c,out e i ϕ δ a ^ c,out e i ϕ ] =sinΔδ Y ^ c,in δΔcosΔ Y ^ c,in +cosΔδ Y ^ i,in δΔsinΔ Y ^ i,in δ ϕ p cosΔ X ^ i,in .
N X ^ c,out = ( δ X ^ c,out ) 2 = ( δ X ^ c,in ) 2 sin 2 Δ + ( δ X ^ i,in ) 2 cos 2 Δ + cos 2 Δ ( δΔ ) 2 ( X ^ c,in ) 2 + ( δ ϕ p ) 2 cos 2 Δ ( Y ^ i,in ) 2 + sin 2 Δ ( δΔ ) 2 ( X ^ i,in ) 2 ,
N Y ^ c,out = ( δ Y ^ c,out ) 2 = ( δ Y ^ c,in ) 2 sin 2 Δ + ( δ Y ^ i,in ) 2 cos 2 Δ + cos 2 Δ ( δΔ ) 2 ( Y ^ c,in ) 2 + sin 2 Δ ( δΔ ) 2 ( Y ^ i,in ) 2 + ( δ ϕ p ) 2 cos 2 Δ ( X ^ i,in ) 2 .
N X ^ c,out = ( δ X ^ c,in ) 2 sin 2 Δ + ( δ X ^ i,in ) 2 cos 2 Δ + sin 2 Δ π 2 P i,in ω p 4 P p 0 ω s ( δ X p ) 2 ,
N Y ^ c,out = ( δ Y ^ c,in ) 2 sin 2 Δ + ( δ Y ^ i,in ) 2 cos 2 Δ + cos 2 Δ P i,in ω p P p ω s ( δ Y p ) 2 ,
N X ^ c,out = N X ^ c,out ( δ X ^ i,in ) 2 = sin 2 Δ ( ( δ X ^ c,in ) 2 ( δ X ^ i,in ) 2 )+ sin 2 Δ π 2 P i,in λ s 4 P p 0 λ p ( δ X p ) 2 ,
N Y ^ c,out = N Y ^ c,out ( δ Y ^ i,in ) 2 = sin 2 Δ ( ( δ Y ^ c,in ) 2 ( δ Y ^ i,in ) 2 )+ cos 2 Δ P i,in λ s P p λ p ( δ Y p ) 2 .

Metrics