Abstract

We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Iterative ghost imaging

Wei Wang, Yan Pu Wang, Jiahua Li, Xiaoxue Yang, and Ying Wu
Opt. Lett. 39(17) 5150-5153 (2014)

Object reconstitution using pseudo-inverse for ghost imaging

Chi Zhang, Shuxu Guo, Junsheng Cao, Jian Guan, and Fengli Gao
Opt. Express 22(24) 30063-30073 (2014)

Normalized ghost imaging

Baoqing Sun, Stephen S. Welsh, Matthew P. Edgar, Jeffrey H. Shapiro, and Miles J. Padgett
Opt. Express 20(15) 16892-16901 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [Crossref] [PubMed]
  4. J. Cheng and S. S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref] [PubMed]
  5. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
    [Crossref]
  6. Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
    [Crossref]
  7. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354 (2005).
    [Crossref] [PubMed]
  8. X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695 (2009).
    [Crossref] [PubMed]
  9. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343 (2009).
    [Crossref] [PubMed]
  10. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).
    [Crossref] [PubMed]
  11. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
    [Crossref]
  12. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
    [Crossref]
  13. X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fuctuations,” AIP Advances 3, 052121 (2013).
    [Crossref]
  14. X. F. Liu, X. R. Yao, X. H. Chen, L. A. Wu, and G. J. Zhai, “Thermal light optical coherence tomography for transmissive objects,,” J. Opt. Soc. Am. A 29, 1922 (2012).
    [Crossref]
  15. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391 (2010).
    [Crossref] [PubMed]
  16. M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
    [Crossref]
  17. S. Li, X. R. Yao, W. K. Yu, L. A. Wu, and G. J. Zhai, “High-speed secure key distribution over an optical network based on computational correlation imaging,” Opt. Lett. 38, 2144 (2013).
    [Crossref] [PubMed]
  18. W. K. Yu, S. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network,” Appl. Opt. 52, 7882 (2013).
    [Crossref]
  19. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  20. B. Sun, S. S. Welsh, P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892 (2012).
    [Crossref]
  21. K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
    [Crossref]
  22. M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
    [Crossref]
  23. M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
    [Crossref]
  24. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  25. J. Du, W. l. Gong, and S. S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067 (2012).
    [Crossref] [PubMed]
  26. W. K. Yu, M. F. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133 (2014).
    [Crossref] [PubMed]
  27. W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative ghost imaging,” Opt. Lett. 39, 5150 (2014).
    [Crossref] [PubMed]
  28. P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
    [Crossref]
  29. B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
    [Crossref]

2014 (2)

2013 (5)

S. Li, X. R. Yao, W. K. Yu, L. A. Wu, and G. J. Zhai, “High-speed secure key distribution over an optical network based on computational correlation imaging,” Opt. Lett. 38, 2144 (2013).
[Crossref] [PubMed]

W. K. Yu, S. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network,” Appl. Opt. 52, 7882 (2013).
[Crossref]

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fuctuations,” AIP Advances 3, 052121 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

2012 (6)

M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

J. Du, W. l. Gong, and S. S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067 (2012).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892 (2012).
[Crossref]

X. F. Liu, X. R. Yao, X. H. Chen, L. A. Wu, and G. J. Zhai, “Thermal light optical coherence tomography for transmissive objects,,” J. Opt. Soc. Am. A 29, 1922 (2012).
[Crossref]

2011 (2)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

2010 (2)

2009 (5)

2008 (1)

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

2005 (2)

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354 (2005).
[Crossref] [PubMed]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Ahmadi-Kandjani, S.

M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Boyd, R. W.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Cai, Y. J.

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

Cao, D. Z.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Chan, K. W. C.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343 (2009).
[Crossref] [PubMed]

Chen, X. H.

Cheng, J.

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Clemente, P.

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Du, J.

Durán, V.

Edgar, P.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

Fan, H.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Gao, L.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Gong, W. l.

Han, S. S.

J. Du, W. l. Gong, and S. S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067 (2012).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Hardy, N. D.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

Huang, B. Q.

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Kherdmand, R.

M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

Krogstad, M.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Lancis, J.

Li, J.

Li, M. F.

W. K. Yu, M. F. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133 (2014).
[Crossref] [PubMed]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fuctuations,” AIP Advances 3, 052121 (2013).
[Crossref]

Li, S.

Lin, L. F.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Liu, Q.

Liu, X. F.

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Luo, K. H.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695 (2009).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

O’Sullivan, M. N.

OSullivan, M. N.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Padgett, M. J.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shapiro, J. H.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

B. Sun, S. S. Welsh, P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892 (2012).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

Shi, Z.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Sun, B.

Tajahuerce, E.

Tanha, M.

M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

Torres-Company, V.

Wang, K. G.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Wang, W.

Wang, Y. P.

Welsh, S. S.

Wu, L. A.

W. K. Yu, M. F. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133 (2014).
[Crossref] [PubMed]

W. K. Yu, S. Li, X. R. Yao, X. F. Liu, L. A. Wu, and G. J. Zhai, “Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network,” Appl. Opt. 52, 7882 (2013).
[Crossref]

S. Li, X. R. Yao, W. K. Yu, L. A. Wu, and G. J. Zhai, “High-speed secure key distribution over an optical network based on computational correlation imaging,” Opt. Lett. 38, 2144 (2013).
[Crossref] [PubMed]

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fuctuations,” AIP Advances 3, 052121 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

X. F. Liu, X. R. Yao, X. H. Chen, L. A. Wu, and G. J. Zhai, “Thermal light optical coherence tomography for transmissive objects,,” J. Opt. Soc. Am. A 29, 1922 (2012).
[Crossref]

X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695 (2009).
[Crossref] [PubMed]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354 (2005).
[Crossref] [PubMed]

Wu, Y.

Xiong, J.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Yang, X.

Yao, X. R.

Yu, W. K.

Zerom, P.

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Zhai, G. J.

Zhai, Y. H.

Zhang, D.

Zhang, S. H.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

Zhang, Y. R.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

Zheng, W. M.

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Zhu, S. Y.

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

AIP Advances (1)

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fuctuations,” AIP Advances 3, 052121 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Tanha, R. Kherdmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Appl. Phys. Lett. 103, 211119 (2013).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Chin. Phys. Lett. (1)

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, ”Nonlocal Imaging by Conditional Averaging of Random Reference Measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. A (5)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011).
[Crossref]

P. Zerom, Z. Shi, M. N. OSullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[Crossref]

Phys. Rev. E (1)

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

Phys. Rev. Lett. (4)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of ghost imaging. BS: beamsplitter; CCD1: CCD camera acting as a bucket detector; CCD2: CCD reference detector.
Fig. 2
Fig. 2 (a) The binary object which is opaque except for an transparent square at the center. (b) The distribution of σ2(x0, x′) in which x0 is placed far from the transparent area of the object. (c) Image obtained by multiplying (a) with (b). (b1) The distribution of σ2(x′0, x′) in which x′0 is placed at the edge of the transparent rectangle. (c1) Image obtained by multiplying (a) with (b1). (d) The conventional GI image, the value at x0 is the sum of the values in the square in (c), while the value at x′0 is the sum of the values in the square in (c1).
Fig. 3
Fig. 3 Dependence of retrieved image on threshold. (a) The object. (b) Image retrieved with t′ = 0.1. (c) Image retrieved with t′ = 0.9. (d) Image retrieved with t′ = 0.5. (e) SNRimage vs. normalized threshold t′.
Fig. 4
Fig. 4 Simulated results for GI, DGI and IDGI, averaged over 50,000 frames. (a) The object. (b) GI image, with SNRimage = 1.32. (c) DGI image, with SNRimage = 2.11. (d) IDGI image from k = 3 iterations, with SNRimage = 4.52.
Fig. 5
Fig. 5 Experimental results for GI, DGI and IDGI. (a) Digital mask. (b) GI image, with SNRimage = 1.39. (c) DGI image, with SNRimage = 2.45. (d) IDGI image, with SNRimage = 6.93.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ G ( 2 ) ( x ) = 1 M i = 1 M I B ( i ) I R ( i ) ( x ) 1 M i = 1 M I B ( i ) 1 M i = 1 M I R ( i ) ( x ) .
1 M i = 1 M I B ( i ) I R ( i ) ( x ) = 1 M i = 1 M x N O ( x ) ( I R ( i ) ( x ) I ¯ ( x ) ) ( I R ( i ) ( x ) I ¯ ( x ) ) + I ¯ ( x ) x N I ¯ ( x ) O ( x ) = σ 2 ( x , x ) O ( x ) + x x σ 2 ( x , x ) O ( x ) + I ¯ ( x ) x N I ¯ ( x ) O ( x )
1 M i = 1 M I B ( i ) 1 M i = 1 M I R ( i ) ( x ) = I ¯ ( x ) x N I ¯ ( x ) O ( x ) ,
Δ G ( 2 ) ( x ) = σ 2 O ( x )
Δ G ( 2 ) ( x ) = σ 2 O ( x ) + x x n ( x , x ) O ( x ) .
DGI ( x ) = 1 M i = 1 M I B ( i ) I R ( i ) ( x ) I B ¯ I R 1 M i = 1 M ( I R ( i ) ( x ) x N I R ( i ) ( x ) ) = Δ G ( 2 ) ( x ) I B ¯ I R ( 1 M i = 1 M ( I R ( i ) ( x ) x N I R ( i ) ( x ) ) I R 1 M i = 1 M I R ( i ) ( x ) ) = σ 2 O ( x ) + x x n ( x , x ) O ( x ) T x n ( x , x )
IDGI ( x ) = σ 2 O ( x ) + x x n ( x , x ) O ( x ) x x n ( x , x ) O ( x ) ,
IDGI ( k + 1 ) ( x ) = σ 2 O ( x ) + x x n ( x , x ) O ( x ) x x n ( x , x ) IDGI ( k ) ( x ) , n ( x , x ) = n ( x , x ) , n ( x , x ) t ; n ( x , x ) = 0 , n ( x , x ) > t .
SNR image = x N [ O ( x ) T ] 2 x N [ R ( x ) O ( x ) ] 2 ,
SNR signal = 20 log ( σ ( signal ) σ ( noise ) ) ,

Metrics