Abstract

An enhanced spectral response was realized in an AlGaN-based solar-blind ultraviolet (SB-UV) detector using aluminum (Al) nanoparticles (NPs) of 20-60 nm. The peak responsivity of the detector (about 288 nm) with 60 nm Al NPs is more than two times greater than that of a detector without Al NPs under a 5-V bias, reaching 0.288 A/W. To confirm the enhancement mechanism of the Al NPs, extinction spectra were simulated using time-domain and frequency-domain finite-element methods. The calculation results show that the dipole surface plasmon resonance wavelength of the Al NPs is localized near the peak responsivity position of AlGaN-based SB-UV detectors. Thus, the improvement in the detectors can be ascribed to the localized surface plasmon resonance effect of the Al NPs. The localized electric field enhancement and related scattering effect result in the generation of more electron-hole pairs and thus a higher responsivity. In addition, the dark current of AlGaN-based SB-UV detectors does not increase after the deposition of Al nanoparticles. The results presented here is promising for applications of AlGaN-based SB-UV detectors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of a Cu2O/ZnO photodetector via surface plasmon resonance induced by Ag nanoparticles

Wei Li, Dengkui Wang, Zhenzhong Zhang, Xueying Chu, Xuan Fang, Xinwei Wang, Dan Fang, Fengyuan Lin, Xiaohua Wang, and Zhipeng Wei
Opt. Mater. Express 8(11) 3561-3567 (2018)

Spectral response modification of TiO2 MSM photodetector with an LSPR filter

Deniz Çalışkan, Bayram Bütün, Şadan Özcan, and Ekmel Özbay
Opt. Express 22(12) 14096-14100 (2014)

AlGaN photonics: recent advances in materials and ultraviolet devices

Dabing Li, Ke Jiang, Xiaojuan Sun, and Chunlei Guo
Adv. Opt. Photon. 10(1) 43-110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Razeghi, “Short-Wavelength Solar-Blind Detectors-Status, Prospects, and Markets,” Proc. IEEE 90(6), 1006–1014 (2002).
    [Crossref]
  2. R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
    [Crossref]
  3. X.-L. Zhong and Z.-Y. Li, “Giant Enhancement of Near-Ultraviolet Light Absorption by TiO2 via a Three-Dimensional Aluminum Plasmonic Nano Funnel-Antenna,” J. Phys. Chem. C 116(40), 21547–21555 (2012).
    [Crossref]
  4. S.-Y. Du and Z.-Y. Li, “Enhanced light absorption of TiO2 in the near-ultraviolet band by Au nanoparticles,” Opt. Lett. 35(20), 3402–3404 (2010).
    [Crossref] [PubMed]
  5. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  6. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
    [Crossref]
  7. G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
    [Crossref]
  8. N. Wang, M. R. Hashemi, and M. Jarrahi, “Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity,” Opt. Express 21(14), 17221–17227 (2013).
    [Crossref] [PubMed]
  9. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  10. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  11. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [Crossref] [PubMed]
  12. D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
    [Crossref] [PubMed]
  13. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
    [Crossref] [PubMed]
  14. X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
    [Crossref]
  15. C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
    [Crossref]
  16. M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  17. X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
    [Crossref]
  18. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [Crossref]
  19. H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
    [Crossref]
  20. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  21. S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref] [PubMed]
  22. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  23. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  24. D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
    [Crossref]
  25. X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
    [Crossref]

2014 (2)

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

2013 (5)

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

N. Wang, M. R. Hashemi, and M. Jarrahi, “Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity,” Opt. Express 21(14), 17221–17227 (2013).
[Crossref] [PubMed]

2012 (6)

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

X.-L. Zhong and Z.-Y. Li, “Giant Enhancement of Near-Ultraviolet Light Absorption by TiO2 via a Three-Dimensional Aluminum Plasmonic Nano Funnel-Antenna,” J. Phys. Chem. C 116(40), 21547–21555 (2012).
[Crossref]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

2011 (4)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (2)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

2006 (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

2005 (1)

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

2002 (1)

M. Razeghi, “Short-Wavelength Solar-Blind Detectors-Status, Prospects, and Markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Agio, M.

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Ahmed, Z. H.

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Bai, Y. B.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Chen, Y. R.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

Cho, C. Y.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Cicek, E.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Du, S.-Y.

Ekinci, Y.

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Everitt, H. O.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Fan, X. F.

X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Girard, C.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hashemi, M. R.

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Jarrahi, M.

Jha, S. K.

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Jiang, H.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

Jiang, Y.

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

King, N. S.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Kung, P.

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Li, D. B.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

Li, Z. M.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

Li, Z.-Y.

X.-L. Zhong and Z.-Y. Li, “Giant Enhancement of Near-Ultraviolet Light Absorption by TiO2 via a Three-Dimensional Aluminum Plasmonic Nano Funnel-Antenna,” J. Phys. Chem. C 116(40), 21547–21555 (2012).
[Crossref]

S.-Y. Du and Z.-Y. Li, “Enhanced light absorption of TiO2 in the near-ultraviolet band by Au nanoparticles,” Opt. Lett. 35(20), 3402–3404 (2010).
[Crossref] [PubMed]

Liu, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Liu, L. F.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Löffler, J. F.

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

McClintock, R.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

Miao, G. Q.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

Minder, K.

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Murai, S. S.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Qin, H. J.

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

Quidant, R.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Rahnema, B.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Razeghi, M.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

M. Razeghi, “Short-Wavelength Solar-Blind Detectors-Status, Prospects, and Markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

Rivas, J. G.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Rodriguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Singh, D. J.

X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Song, H.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

Stockman, M. I.

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Sun, X. J.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Wang, N.

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Wu, K. H.

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

Yasan, A.

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zhang, G. H.

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

Zhang, Y. J.

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

Zhang, Z. W.

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

Zheng, W. T.

X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Zhong, X.-L.

X.-L. Zhong and Z.-Y. Li, “Giant Enhancement of Near-Ultraviolet Light Absorption by TiO2 via a Three-Dimensional Aluminum Plasmonic Nano Funnel-Antenna,” J. Phys. Chem. C 116(40), 21547–21555 (2012).
[Crossref]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

ACS Nano (2)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, “Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. B. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[Crossref]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

H. J. Qin, Y. Jiang, G. H. Zhang, and K. H. Wu, “Interaction of surface and interface plasmons in extremely thin Al films on Si (111),” Appl. Phys. Lett. 102(5), 051605 (2013).
[Crossref]

R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Avalanche multiplication in AlGaN based solar-blind photodetectors,” Appl. Phys. Lett. 87(24), 241123 (2005).
[Crossref]

D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-55 semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 98(1), 011108 (2011).
[Crossref]

X. J. Sun, D. B. Li, H. Song, H. Jiang, Z. M. Li, H. Song, Y. R. Chen, and G. Q. Miao, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett. 98(12), 121117 (2011).
[Crossref]

CrystEngComm (1)

X. J. Sun, D. B. Li, Y. R. Chen, H. Song, H. Jiang, Z. M. Li, G. Q. Miao, and Z. W. Zhang, “In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition,” CrystEngComm 15(30), 6066–6073 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

S. K. Jha, Z. H. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

X.-L. Zhong and Z.-Y. Li, “Giant Enhancement of Near-Ultraviolet Light Absorption by TiO2 via a Three-Dimensional Aluminum Plasmonic Nano Funnel-Antenna,” J. Phys. Chem. C 116(40), 21547–21555 (2012).
[Crossref]

Laser Photonics Rev. (1)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

Light: Sci. Appl. (2)

G. Lozano, D. J. Louwers, S. R. K. Rodrıguez, S. S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e661–e667 (2013).
[Crossref]

X. F. Fan, W. T. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Nano Lett. (2)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Proc. IEEE (1)

M. Razeghi, “Short-Wavelength Solar-Blind Detectors-Status, Prospects, and Markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of Al NPs on an AlGaN-based deep-UV detector. (b-d) Top-view SEM images of Al NPs with diameters of 20 nm, 40 nm, and 60 nm, respectively, deposited on the detectors. (e-f) 3D morphology and corresponding cross-sectional profile of the Al NPs.
Fig. 2
Fig. 2 Spectral response of AlGaN detectors with and without Al nanoparticles under a 5-V bias.
Fig. 3
Fig. 3 Schematic mechanism of AlGaN-based detectors with Al NPs.
Fig. 4
Fig. 4 FDTD simulations. (a) Normalized extinction spectra (scattering + absorption) of isolated Al/Al2O3 core/shell nanocylinders. (b)-(d) Normalized extinction spectra of Al/Al2O3 core/shell nanocylinders with Al NP diameters D of 20 nm, 40 nm, and 60 nm, respectively, and gaps ranging from 5 to 100 nm.
Fig. 5
Fig. 5 (a) Electric field amplitude distribution of a single Al nanocylinder with a diameter of 20/40/60 nm and a 3-nm Al2O3 shell. (b) Electric field amplitude distribution of Al NPs with a diameter of 40 nm and a gap g of 10/20/40 nm.
Fig. 6
Fig. 6 Dark current-voltage (I-V) curves of AlGaN detectors without NPs and with 20-nm, 40-nm, and 60-nm Al NPs.

Metrics