Abstract

Study of the liquid crystal (LC) director around nanoparticles has been an important topic of research very recently, since it allows design and fabrication of next-generation LC devices that are impossible in the past. In our experiment, alkanethiol-capped gold nanoparticles (GNPs) were dispersed in nematic LC. Analysis of the LC director around GNPs was performed by investigating the behavior of surface plasmon polariton (SPP) absorption peaks of the GNPs using spectrophotometry technique. It is found that the incident linearly polarized light orientated at 0°, 45°, and 90° angles with respect to the rubbing direction experiences varying interaction with the LC medium. The corresponding transmission of light reveals the anisotropic shift in wavelength of SPP peak. The anisotropic behavior of SPPs of the GNPs is in agreement with theoretical calculations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy

T. Cacace, A. García-García, G. Zito, V. Tkachenko, G. Rusciano, M. A. Geday, J.M. Otón, A. Marino, and A. Sasso
Opt. Express 24(14) 15954-15964 (2016)

Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles

Daniel Budaszewski, Miłosz Chychłowski, Agata Budaszewska, Bartosz Bartosewicz, Bartłomiej Jankiewicz, and Tomasz R. Woliński
Opt. Express 27(10) 14260-14269 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Busch and S. John, “Liquid crystal photonic band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
    [Crossref]
  2. P. G. de Gennes, The Physics of Liquid Crystal Research (Clarendon Press, 1974).
  3. C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
    [Crossref] [PubMed]
  4. O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
    [Crossref] [PubMed]
  5. J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
    [Crossref] [PubMed]
  6. Y. Gu and N. L. Abbott, “Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett. 85(22), 4719–4722 (2000).
    [Crossref] [PubMed]
  7. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
    [Crossref] [PubMed]
  8. R. Yamamoto, “Simulating particle dispersions in nematic liquid-crystal solvents,” Phys. Rev. Lett. 87(7), 075502 (2001).
    [Crossref] [PubMed]
  9. J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
    [Crossref] [PubMed]
  10. M. A. Bates, “Nanospheres in a nematic liquid crystal solvent: the influence of particle size,” Liq. Cryst. 32(11-12), 1525–1529 (2005).
    [Crossref]
  11. I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
    [Crossref] [PubMed]
  12. V. M. Pergamenshchik and V. A. Uzunova, “Colloidal nematostatics,” Condens. Matter Phys. 13(3), 33602 (2010).
    [Crossref]
  13. B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
    [Crossref] [PubMed]
  14. B. I. Lev and P. M. Tomchuk, “Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(1), 591–602 (1999).
    [Crossref]
  15. I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
    [Crossref] [PubMed]
  16. V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
    [Crossref] [PubMed]
  17. F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
    [Crossref] [PubMed]
  18. S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005).
    [Crossref] [PubMed]
  19. P. G. de Gennes, “An Analogy Between Superconductors And Smectic A,” Solid State Commun. 10(9), 753–756 (1972).
    [Crossref]
  20. P. G. de Gennes, “Some Remarks on the Polymorphism of Smectics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 49–76 (1973).
    [Crossref]
  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters. (Springer, 1995).
  22. L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
    [Crossref]
  23. G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
    [Crossref]
  24. H. Stark, “Director Field Configurations Around A Spherical Particle In A Nematic Liquid Crystal,” Eur. Phys. J. B 10(2), 311–321 (1999).
    [Crossref]
  25. J. Fukuda, “Continuous Transformation Of A -1/2 Wedge Disclination Line To A +1/2 one,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 040701 (2010).
    [Crossref] [PubMed]
  26. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
    [Crossref]
  27. I. C. Khoo, Liquid Crystal. (Wiley-Interscience, 2007).
  28. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
    [Crossref]
  29. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
    [Crossref] [PubMed]
  30. S. Link and M. A. E. Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  33. G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
    [Crossref]
  34. G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [Crossref]
  35. G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
    [Crossref]

2014 (1)

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

2012 (2)

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[Crossref]

2010 (3)

J. Fukuda, “Continuous Transformation Of A -1/2 Wedge Disclination Line To A +1/2 one,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 040701 (2010).
[Crossref] [PubMed]

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

V. M. Pergamenshchik and V. A. Uzunova, “Colloidal nematostatics,” Condens. Matter Phys. 13(3), 33602 (2010).
[Crossref]

2008 (1)

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

2007 (3)

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

2006 (4)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

2005 (3)

M. A. Bates, “Nanospheres in a nematic liquid crystal solvent: the influence of particle size,” Liq. Cryst. 32(11-12), 1525–1529 (2005).
[Crossref]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005).
[Crossref] [PubMed]

2004 (1)

J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
[Crossref] [PubMed]

2002 (2)

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
[Crossref] [PubMed]

2001 (1)

R. Yamamoto, “Simulating particle dispersions in nematic liquid-crystal solvents,” Phys. Rev. Lett. 87(7), 075502 (2001).
[Crossref] [PubMed]

2000 (1)

Y. Gu and N. L. Abbott, “Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett. 85(22), 4719–4722 (2000).
[Crossref] [PubMed]

1999 (4)

K. Busch and S. John, “Liquid crystal photonic band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

B. I. Lev and P. M. Tomchuk, “Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(1), 591–602 (1999).
[Crossref]

S. Link and M. A. E. Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

H. Stark, “Director Field Configurations Around A Spherical Particle In A Nematic Liquid Crystal,” Eur. Phys. J. B 10(2), 311–321 (1999).
[Crossref]

1997 (1)

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

1996 (1)

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

1973 (1)

P. G. de Gennes, “Some Remarks on the Polymorphism of Smectics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 49–76 (1973).
[Crossref]

1972 (2)

P. G. de Gennes, “An Analogy Between Superconductors And Smectic A,” Solid State Commun. 10(9), 753–756 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abbott, N. L.

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

Y. Gu and N. L. Abbott, “Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett. 85(22), 4719–4722 (2000).
[Crossref] [PubMed]

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Äyräs, P.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Bates, M. A.

M. A. Bates, “Nanospheres in a nematic liquid crystal solvent: the influence of particle size,” Liq. Cryst. 32(11-12), 1525–1529 (2005).
[Crossref]

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Botet, R.

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Busch, K.

K. Busch and S. John, “Liquid crystal photonic band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

Cheng, L. L.

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

Chernyshuk, S. B.

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

de Gennes, P. G.

P. G. de Gennes, “Some Remarks on the Polymorphism of Smectics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 49–76 (1973).
[Crossref]

P. G. de Gennes, “An Analogy Between Superconductors And Smectic A,” Solid State Commun. 10(9), 753–756 (1972).
[Crossref]

de Pablo, J. J.

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Fukuda, J.

J. Fukuda, “Continuous Transformation Of A -1/2 Wedge Disclination Line To A +1/2 one,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 040701 (2010).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
[Crossref] [PubMed]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Gu, Y.

Y. Gu and N. L. Abbott, “Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett. 85(22), 4719–4722 (2000).
[Crossref] [PubMed]

Haddock, J.

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hernández-Ortiz, J. P.

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

Honkanen, S.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hsu, L. H.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

Huang, C. Y.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

Huang, S. A.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

Jang, C. H.

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

John, S.

K. Busch and S. John, “Liquid crystal photonic band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kachynski, A. V.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kippelen, B.

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Koenig, G. M.

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kuksenok, O. V.

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

Kuzmin, A. N.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

Lev, B. I.

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

B. I. Lev and P. M. Tomchuk, “Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(1), 591–602 (1999).
[Crossref]

Li, G.

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. E. Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Lo, K. Y.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

Loudet, J.-C.

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Lubensky, T. C.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Mathine, D.

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Meli, M. V.

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

Meredith, G.

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Mondain-Monval, O.

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Mondiot, F.

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Musevic, I.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Olsen, C. W.

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

Park, J. S.

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

Park, S. Y.

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005).
[Crossref] [PubMed]

Pergamenshchik, V. M.

V. M. Pergamenshchik and V. A. Uzunova, “Colloidal nematostatics,” Condens. Matter Phys. 13(3), 33602 (2010).
[Crossref]

Peyghambarian, N.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Poulin, P.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Prasad, P. N.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

Ravnik, M.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Roberts, T. F.

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

Ruhwandl, R. W.

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

Sayed, M. A. E.

S. Link and M. A. E. Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Shiyanovskii, S. V.

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

Skarabot, M.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Smalyukh, I. I.

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

Snabre, P.

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Stark, H.

H. Stark, “Director Field Configurations Around A Spherical Particle In A Nematic Liquid Crystal,” Eur. Phys. J. B 10(2), 311–321 (1999).
[Crossref]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Stroud, D.

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005).
[Crossref] [PubMed]

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Terentjev, E. M.

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

Tkalec, U.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Tomar, V.

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

Tomchuk, P. M.

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

B. I. Lev and P. M. Tomchuk, “Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(1), 591–602 (1999).
[Crossref]

Uzunova, V. A.

V. M. Pergamenshchik and V. A. Uzunova, “Colloidal nematostatics,” Condens. Matter Phys. 13(3), 33602 (2010).
[Crossref]

Valley, P.

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Weitz, D. A.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Yamamoto, R.

R. Yamamoto, “Simulating particle dispersions in nematic liquid-crystal solvents,” Phys. Rev. Lett. 87(7), 075502 (2001).
[Crossref] [PubMed]

Yang, C. S.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

Yokoyama, H.

J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
[Crossref] [PubMed]

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
[Crossref] [PubMed]

Yoneya, M.

J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
[Crossref] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zumer, S.

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[Crossref]

G. Li, P. Valley, M. S. Giridhar, D. Mathine, G. Meredith, J. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode pattern,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, P. Valley, P. Äyräs, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system,” Chem. Commun. 7(7), 801–802 (1994).
[Crossref]

Chem. Mater. (1)

G. M. Koenig, M. V. Meli, J. S. Park, J. J. de Pablo, and N. L. Abbott, “Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals,” Chem. Mater. 19(5), 1053–1061 (2007).
[Crossref]

Condens. Matter Phys. (1)

V. M. Pergamenshchik and V. A. Uzunova, “Colloidal nematostatics,” Condens. Matter Phys. 13(3), 33602 (2010).
[Crossref]

Eur Phys J E Soft Matter (1)

J. Fukuda, M. Yoneya, and H. Yokoyama, “Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement,” Eur Phys J E Soft Matter 13(1), 87–98 (2004).
[Crossref] [PubMed]

Eur. Phys. J. B (1)

H. Stark, “Director Field Configurations Around A Spherical Particle In A Nematic Liquid Crystal,” Eur. Phys. J. B 10(2), 311–321 (1999).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. E. Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Langmuir (1)

V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, “Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase,” Langmuir 28(14), 6124–6131 (2012).
[Crossref] [PubMed]

Liq. Cryst. (1)

M. A. Bates, “Nanospheres in a nematic liquid crystal solvent: the influence of particle size,” Liq. Cryst. 32(11-12), 1525–1529 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. G. de Gennes, “Some Remarks on the Polymorphism of Smectics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 49–76 (1973).
[Crossref]

Nano Lett. (2)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

C. H. Jang, L. L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of nematic liquid crystals on viruses with different envelope structures,” Nano Lett. 6(5), 1053–1058 (2006).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. Fukuda, “Continuous Transformation Of A -1/2 Wedge Disclination Line To A +1/2 one,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 040701 (2010).
[Crossref] [PubMed]

B. I. Lev, S. B. Chernyshuk, P. M. Tomchuk, and H. Yokoyama, “Symmetry breaking and interaction of colloidal particles in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 021709 (2002).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

B. I. Lev and P. M. Tomchuk, “Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(1), 591–602 (1999).
[Crossref]

O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, “Director structure around a colloid particle suspended in a nematic liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5198–5203 (1996).
[Crossref] [PubMed]

Phys. Rev. E. (1)

J. Fukuda, M. Yoneya, and H. Yokoyama, “Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach,” Phys. Rev. E. 65(4), 041709 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

Y. Gu and N. L. Abbott, “Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals,” Phys. Rev. Lett. 85(22), 4719–4722 (2000).
[Crossref] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[Crossref] [PubMed]

K. Busch and S. John, “Liquid crystal photonic band gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[Crossref]

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94(21), 217401 (2005).
[Crossref] [PubMed]

R. Yamamoto, “Simulating particle dispersions in nematic liquid-crystal solvents,” Phys. Rev. Lett. 87(7), 075502 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

F. Mondiot, R. Botet, P. Snabre, O. Mondain-Monval, and J.-C. Loudet, “Colloidal aggregation and dynamics in anisotropic fluids,” Proc. Natl. Acad. Sci. U.S.A. 111(16), 5831–5836 (2014).
[Crossref] [PubMed]

Prog. Opt. (1)

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

Science (2)

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Solid State Commun. (1)

P. G. de Gennes, “An Analogy Between Superconductors And Smectic A,” Solid State Commun. 10(9), 753–756 (1972).
[Crossref]

Other (3)

P. G. de Gennes, The Physics of Liquid Crystal Research (Clarendon Press, 1974).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters. (Springer, 1995).

I. C. Khoo, Liquid Crystal. (Wiley-Interscience, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the experimental set up. (b) Front view of GNP-doped LC molecular alignment in vertical configuration. (c) Front view of GNP-doped LC in planar alignment configuration. The experimental observations recorded at 0°, 45°, and 90° angles between p-polarized light and the rubbing direction.
Fig. 2
Fig. 2 Absorption spectra of GNP-doped MLC 6608 LC material at 0°, 45°, and 90° between the polarizing angles of the incident light and rubbing direction of sample cell under the application of voltage (a) 0 V and (b) 6 V bias.
Fig. 3
Fig. 3 Optical absorption peak wavelength against a wide range of external applied electric field at 0°, 45°, and 90° angles between the incident polarized light to the rubbing direction.
Fig. 4
Fig. 4 Comparison of experimental and theoretical observations calculated from Eq. (1) of propagation constant of SPP wave as a function of dielectric constant (optical frequency dielectric constant) at 0° angle between the polarization state of incident light and the rubbing direction of the sample cell. The parameters used for calculations are λo = 520 nm (reference absorption of GNP in toluene), εm ≅ 2, ε = no2, ε|| = ne2 (optical frequency dielectric constant), and ns = 1.5 (toluene as a dispersing medium for GNP before adding in LC).
Fig. 5
Fig. 5 Calculated extinction cross section of the GNP doped in MLC 6608 LC material as a function of incident energy at various values of dielectric constant of LC material at optical frequencies, i.e., variation of ε L C from short molecular axis to long molecular axis component of dielectric constant.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k S P P = k o [ ε m ε L C / ( ε m + ε L C ) ] 1 / 2 ,
σ e x t = 9 V ε L C 3 2     ω ε 2 ( ω ) c [ ε 1 ( ω ) + 2 ε L C ] 2 + ε 2 ( ω ) 2 ,

Metrics