Abstract

For aqueous-solution-based elemental analysis, we used a thin liquid sheet (μm-scale thickness) in laser-induced breakdown spectroscopy with nanosecond laser pulses. Laser-induced plasma is emitted by focusing a pulsed Nd:YAG laser (1064 nm) on a 5- to 80-μm-thick liquid sheet in air. To optimize the conditions for detecting elements, we studied how the signal-to-background ratio (SBR) for Hα Balmer and Na-neutral emission lines depends on the liquid-sheet thickness. The SBR of the Hα Balmer and Na-neutral lines was maximized for a sheet thickness of ~20 μm at the laser energy of 100 mJ. The hydrodynamics of liquid flow induced by the laser pulse was analyzed by laser flash shadowgraph imaging. Time-resolved observation of the hydrodynamics and plasma emission suggests that the dependence of the SBR on the liquid-sheet thickness is correlated with the volume of flowing liquid that interacts with the laser pulses.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of laser-induced breakdown spectroscopy of a liquid jet

Yuan Feng, Jiajun Yang, Jianmei Fan, Guanxin Yao, Xuehan Ji, Xianyi Zhang, Xianfeng Zheng, and Zhifeng Cui
Appl. Opt. 49(13) C70-C74 (2010)

Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses

Akshaya Kumar, Fang Y. Yueh, and Jagdish P. Singh
Appl. Opt. 42(30) 6047-6051 (2003)

Determination of Ca and Mg in aqueous solution by laser-induced breakdown spectroscopy using absorbent paper substrates

Dehua Zhu, Lizhi Wu, Bin Wang, Jianping Chen, Jian Lu, and Xiaowu Ni
Appl. Opt. 50(29) 5695-5699 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed. (Wiley, 2013).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).
  3. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
    [Crossref]
  4. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B 57(7), 1141–1153 (2002).
    [Crossref]
  5. A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
    [Crossref]
  6. N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66(7), 929–936 (1994).
    [Crossref] [PubMed]
  7. N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
    [Crossref]
  8. Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
    [Crossref]
  9. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
    [Crossref] [PubMed]
  10. K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
    [Crossref]
  11. S. Ünal and Ş. Yalçin, “Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments,” Spectrochim. Acta B 65(8), 750–757 (2010).
    [Crossref]
  12. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
    [Crossref]
  13. N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, “Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples,” Appl. Opt. 47(31), G105–G111 (2008).
    [Crossref] [PubMed]
  14. A. Kumar, F. Y. Yueh, and J. P. Singh, “Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses,” Appl. Opt. 42(30), 6047–6051 (2003).
    [Crossref] [PubMed]
  15. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58(11), 1353–1359 (2004).
    [Crossref] [PubMed]
  16. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42(30), 6052–6056 (2003).
    [Crossref] [PubMed]
  17. H. A. Archontaki and S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42(5), 741–746 (1988).
    [Crossref]
  18. E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
    [Crossref] [PubMed]
  19. C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
    [Crossref]
  20. L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
    [Crossref]
  21. K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
    [Crossref]
  22. A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Determination of thorium and uranium in solution by laser-induced breakdown spectrometry,” Appl. Opt. 47(31), G58–G64 (2008).
    [Crossref] [PubMed]
  23. G. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. London A Math. Phys. Sci. 259(1296), 1–17 (1960).
    [Crossref]
  24. M. Kondoh and M. Tsubouchi, “Liquid-sheet jets for terahertz spectroscopy,” Opt. Express 22(12), 14135–14147 (2014).
    [Crossref] [PubMed]
  25. A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
    [Crossref]
  26. T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
    [Crossref]
  27. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2000).
  28. C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42(30), 5992–6000 (2003).
    [Crossref] [PubMed]
  29. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  30. R. Kelly and A. Miotello, “Comments on explosive mechanisms of laser,” Appl. Surf. Sci. 96–98, 205–215 (1996).
    [Crossref]
  31. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  32. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
    [Crossref]
  33. D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
    [Crossref]
  34. Yu. P. Raizer, “Heating of a gas by a powerful light pulse,” Sov. Phys. JETP 21(5), 1009–1017 (1965).
  35. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
    [Crossref] [PubMed]
  36. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: Plasma luminescence and shielding,” Appl. Opt. 27(17), 3669–3674 (1988).
    [Crossref] [PubMed]
  37. Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
    [Crossref]
  38. R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, and A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27(5), 987–996 (1988).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
[Crossref]

2012 (2)

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

2011 (1)

D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
[Crossref]

2010 (1)

S. Ünal and Ş. Yalçin, “Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments,” Spectrochim. Acta B 65(8), 750–757 (2010).
[Crossref]

2008 (2)

2005 (1)

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

2004 (2)

A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
[Crossref]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58(11), 1353–1359 (2004).
[Crossref] [PubMed]

2003 (4)

2002 (1)

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B 57(7), 1141–1153 (2002).
[Crossref]

2000 (2)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
[Crossref]

1998 (1)

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

1996 (2)

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

R. Kelly and A. Miotello, “Comments on explosive mechanisms of laser,” Appl. Surf. Sci. 96–98, 205–215 (1996).
[Crossref]

1995 (2)

A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
[Crossref]

1994 (1)

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66(7), 929–936 (1994).
[Crossref] [PubMed]

1992 (1)

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

1989 (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

1988 (4)

1984 (1)

1983 (1)

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

1965 (1)

Yu. P. Raizer, “Heating of a gas by a powerful light pulse,” Sov. Phys. JETP 21(5), 1009–1017 (1965).

1960 (1)

G. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. London A Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

Aggarwal, S. K.

Alamelu, D.

Almirall, J. R.

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

Archontaki, H. A.

Ayala, N. L.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

Beaven, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Biswas, A.

Body, D.

Cahoon, E. M.

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

Capon, M. R. C.

Chadwick, B. L.

Chaker, M.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

Charfi, B.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B 57(7), 1141–1153 (2002).
[Crossref]

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
[Crossref]

Cheung, N. H.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66(7), 929–936 (1994).
[Crossref] [PubMed]

Chylek, P.

Creegan, E.

Cremers, D. A.

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
[Crossref]

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

Crouch, S. R.

De Giacomo, A.

A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
[Crossref]

De Pascale, O.

A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
[Crossref]

Dell’aglio, M.

A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
[Crossref]

Docchio, F.

Fernandez, G.

Fleige, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Harith, M. A.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B 57(7), 1141–1153 (2002).
[Crossref]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

Ho, W. F.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

Hoffman, N. M.

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

Ishida, Y.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Ito, Y.

T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
[Crossref]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
[Crossref]

Jacques, S. L.

A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Jang, D.

D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
[Crossref]

Jantzen, E.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Janzen, C.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Jarzembski, M.

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Kaneko, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

Kelly, R.

R. Kelly and A. Miotello, “Comments on explosive mechanisms of laser,” Appl. Surf. Sci. 96–98, 205–215 (1996).
[Crossref]

Kim, D.

D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
[Crossref]

Knoth, J.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Koke, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Kondoh, M.

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Kumar, A.

Kuwako, A.

Lahmann, W.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Laville, S.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
[Crossref]

Liška, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Loree, T. R.

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
[Crossref]

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

Maeda, K.

Mellerio, J.

Miotello, A.

R. Kelly and A. Miotello, “Comments on explosive mechanisms of laser,” Appl. Surf. Sci. 96–98, 205–215 (1996).
[Crossref]

Morrison, R. J. S.

Nakamoto, M.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
[Crossref]

Ng, C. W.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

Ng, K. C.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

Nguyen, T. T. P.

T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
[Crossref]

Noll, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Oest, A.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Oks, E.

Oraevsky, A.

A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Parigger, C.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
[Crossref]

Parigger, C. G.

Park, J. G.

D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
[Crossref]

Pendleton, J. D.

Pinnick, R. G.

Plemmons, D. H.

Radziemski, L. J.

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
[Crossref]

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

Rai, A. K.

Rai, N. K.

Raizer, Yu. P.

Yu. P. Raizer, “Heating of a gas by a powerful light pulse,” Sov. Phys. JETP 21(5), 1009–1017 (1965).

Regondi, P.

Rifai, K.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

Sabsabi, M.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

Saito, H.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Sarkar, A.

Schwenke, H.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

Simeonsson, J. B.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

Singh, J. P.

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

Srivastava, V.

Tanabe, R.

T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
[Crossref]

Taylor, G.

G. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. London A Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Thakur, S. N.

Tittel, F. K.

A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

Tsubouchi, M.

Uchida, Y.

Ueki, O.

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
[Crossref]

Ünal, S.

S. Ünal and Ş. Yalçin, “Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments,” Spectrochim. Acta B 65(8), 750–757 (2010).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vidal, F.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Watanabe, A.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Winefordner, J. D.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

Yajima, T.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Yalçin, S.

S. Ünal and Ş. Yalçin, “Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments,” Spectrochim. Acta B 65(8), 750–757 (2010).
[Crossref]

Yaroshchyk, P.

Yeung, E. S.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66(7), 929–936 (1994).
[Crossref] [PubMed]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Yueh, F. Y.

Anal. Chem. (4)

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66(7), 929–936 (1994).
[Crossref] [PubMed]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[Crossref] [PubMed]

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55(8), 1246–1252 (1983).
[Crossref]

Anal. Chim. Acta (2)

K. C. Ng, N. L. Ayala, J. B. Simeonsson, and J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta 269(1), 123–128 (1992).
[Crossref]

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299(3), 401–405 (1995).
[Crossref]

Appl. Opt. (8)

F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
[Crossref] [PubMed]

R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, and A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27(5), 987–996 (1988).
[Crossref] [PubMed]

F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: Plasma luminescence and shielding,” Appl. Opt. 27(17), 3669–3674 (1988).
[Crossref] [PubMed]

C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42(30), 5992–6000 (2003).
[Crossref] [PubMed]

A. Kumar, F. Y. Yueh, and J. P. Singh, “Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses,” Appl. Opt. 42(30), 6047–6051 (2003).
[Crossref] [PubMed]

A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42(30), 6052–6056 (2003).
[Crossref] [PubMed]

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Determination of thorium and uranium in solution by laser-induced breakdown spectrometry,” Appl. Opt. 47(31), G58–G64 (2008).
[Crossref] [PubMed]

N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, “Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples,” Appl. Opt. 47(31), G105–G111 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. T. P. Nguyen, R. Tanabe, and Y. Ito, “Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique,” Appl. Phys. Lett. 102(12), 124103 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. De Giacomo, M. Dell’aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1035–1038 (2004).
[Crossref]

Appl. Spectrosc. (3)

Appl. Surf. Sci. (2)

R. Kelly and A. Miotello, “Comments on explosive mechanisms of laser,” Appl. Surf. Sci. 96–98, 205–215 (1996).
[Crossref]

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, “Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions,” Appl. Surf. Sci. 127–129, 274–277 (1998).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (1)

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

J. Appl. Phys. (2)

A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions,” J. Appl. Phys. 78(2), 1281–1290 (1995).
[Crossref]

D. Jang, J. G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys. 109(7), 073101 (2011).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67(2), 91–103 (2000).
[Crossref]

Opt. Commun. (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Opt. Express (1)

Proc. R. Soc. London A Math. Phys. Sci. (1)

G. Taylor, “Formation of thin flat sheets of water,” Proc. R. Soc. London A Math. Phys. Sci. 259(1296), 1–17 (1960).
[Crossref]

Sov. Phys. JETP (1)

Yu. P. Raizer, “Heating of a gas by a powerful light pulse,” Sov. Phys. JETP 21(5), 1009–1017 (1965).

Spectrochim. Acta B (3)

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta B 60(7–8), 993–1001 (2005).
[Crossref]

S. Ünal and Ş. Yalçin, “Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments,” Spectrochim. Acta B 65(8), 750–757 (2010).
[Crossref]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B 57(7), 1141–1153 (2002).
[Crossref]

Other (4)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed. (Wiley, 2013).

A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2000).

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of apparatus used to produce liquid-sheet jet.
Fig. 2
Fig. 2 Experimental setup for laser flash shadowgraph imaging and laser-induced emission spectroscopy.
Fig. 3
Fig. 3 Front- and side-view photographs of liquid sheet of water with flow rate of 130 mL/min. r: the distance from the nozzle exit.
Fig. 4
Fig. 4 (a) Typical interference pattern for water-sheet jet at 20 mm from nozzle exit. (b) Thickness variations in liquid-sheet jet along centerline for distilled water.
Fig. 5
Fig. 5 Measured Hβ line profiles for time delays of (a) 1.0 μs and (b) 5.0 μs following laser-induced breakdown for liquid-sheet thicknesses of 75, 17, and 7 μm.
Fig. 6
Fig. 6 Electron number densities determined from full width at half maximum of Hβ profiles, following laser-induced breakdown for jet thicknesses of 75, 17, and 7 μm.
Fig. 7
Fig. 7 Signal-to-background ratio as a function of liquid-sheet thickness for distilled water and 1 ppm Na aqueous solution.
Fig. 8
Fig. 8 Time-resolved shadowgraph images of liquid jet flow, resulting from a 100-mJ laser pulse in air, as a function of liquid-sheet thickness d. (a) d = 80 μm, (b) d = 20 μm, (c) d = 7 μm. The laser propagation direction is from left to right in the image. Horizontal bars at the left top in the figures indicate 1 mm.
Fig. 9
Fig. 9 Images showing dynamics of emission from a laser-induced spark for a range of time delays and for a 100-mJ incident laser pulse (a) in air (without liquid sheet) and at a thicknesses of (b) d = 80 μm, (c) d = 20 μm, (d) d = 7 μm. The laser propagation direction is from left to right in the image. Horizontal lines indicate the centerline of the incident laser beam and vertical lines in panels (b)–(d) indicate the position of the liquid-sheet flow. Horizontal bars at the top left in the figures indicate 1 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d= [ 2 n 1 2 sin 2 θ λ 1 2 n 2 2 sin 2 θ λ 2 ] 1 ,
Δ λ FWHM =2 α 1/2 ( 2π ) ( 4 15 ) 2/3 e ( N e ) 2/3 ,

Metrics