Abstract

A single frequency Ti:sapphire (Ti:S) laser with continuous frequency-tuning and low intensity noise is presented, in which an extra nonlinear (NL) loss crystal is placed inside the resonator instead of the traditional etalon locking system. When a NL crystal is inserted into a home-made Ti:S laser resonator, the single frequency laser of 1.27 W at 795 nm with a continuous frequency-tuning range of 48 GHz is realized under the pump level of 11.27 W and the intensity noise at the lower frequencies is successfully suppressed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power

Wenzhe Wang, Huadong Lu, Jing Su, and Kunchi Peng
Appl. Opt. 52(11) 2279-2285 (2013)

Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO4 red laser

Rodolphe Sarrouf, Virginie Sousa, Thomas Badr, Guibao Xu, and Jean-Jacques Zondy
Opt. Lett. 32(18) 2732-2734 (2007)

Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser

Suddapalli Chaitanya Kumar, Goutam Kumar Samanta, Kavita Devi, Stefano Sanguinetti, and Majid Ebrahim-Zadeh
Appl. Opt. 51(1) 15-20 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
    [Crossref]
  2. X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
    [Crossref]
  3. H. D. Lu, J. Su, C. D. Xie, and K. C. Peng, “Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser,” Opt. Express 19(2), 1344–1353 (2011).
    [Crossref] [PubMed]
  4. http://www.coherent.com/Products/index.cfm?846/MBR-Ring-Series .
  5. http://www.spectra-physics.com/products/tunable-lasers/matisse/ .
  6. S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
    [Crossref]
  7. http://www.m2lasers.com/products/laser-systems/ti-sapphire-laser.aspx .
  8. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22(6), 375–377 (1997).
    [Crossref] [PubMed]
  9. H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, ”Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
    [Crossref] [PubMed]
  10. H. D. Lu, “Intracavity losses measurement of the Ti:sapphire laser with relaxation resonant oscillation frequency and output power,” Chin. J. Lasers 40(4), 0402002 (2013).
    [Crossref]

2014 (1)

2013 (2)

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

H. D. Lu, “Intracavity losses measurement of the Ti:sapphire laser with relaxation resonant oscillation frequency and output power,” Chin. J. Lasers 40(4), 0402002 (2013).
[Crossref]

2012 (1)

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

2011 (1)

2007 (1)

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

1997 (1)

Baraoulya, V.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Chen, L. R.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Clarkson, W. A.

Duan, Z. Y.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Hanna, D. C.

Jia, X. J.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Kobtsev, S.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Li, S. J.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Lu, H. D.

Lunin, V.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Martin, K. I.

Peng, K. C.

Su, J.

Su, X. L.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Tian, L.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Wang, H.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Wu, Y. L.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Xie, C. D.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

H. D. Lu, J. Su, C. D. Xie, and K. C. Peng, “Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser,” Opt. Express 19(2), 1344–1353 (2011).
[Crossref] [PubMed]

Xu, Z. X.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Yan, Z. H.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Zhang, Z. Y.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

Zheng, Y. H.

Chin. J. Lasers (1)

H. D. Lu, “Intracavity losses measurement of the Ti:sapphire laser with relaxation resonant oscillation frequency and output power,” Chin. J. Lasers 40(4), 0402002 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, and H. Wang, “Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting zeeman degeneracy,” Phys. Rev. Lett. 111(5), 240503 (2013).
[Crossref]

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength,” Phys. Rev. Lett. 109, 253604 (2012).
[Crossref]

Proc. SPIE (1)

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Other (3)

http://www.m2lasers.com/products/laser-systems/ti-sapphire-laser.aspx .

http://www.coherent.com/Products/index.cfm?846/MBR-Ring-Series .

http://www.spectra-physics.com/products/tunable-lasers/matisse/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the continuous frequency-tuning Ti:S laser.
Fig. 2
Fig. 2 Waist size at the center of the BIBO and Ti:S crystals as a function of the distance l3. (a) and (b), the waists at the BIBO crystal of the tangential and sagittal planes, respectively; (c) and (d), the waists at the Ti:S crystal of the tangential and sagittal planes, respectively.
Fig. 3
Fig. 3 Output power of Ti:S laser at 795 nm vs the pump power.
Fig. 4
Fig. 4 Power stability of the SLM 795 nm laser.
Fig. 5
Fig. 5 Measured M2 values and the spatial beam profile for the output laser beam of 795 nm.
Fig. 6
Fig. 6 Automatic smooth scanning frequency of the Ti:S laser by scanning the voltage of three PZTs.
Fig. 7
Fig. 7 Frequency drift of the locked Ti:S laser in one hour.
Fig. 8
Fig. 8 Intensity noise of the laser without (a) and with (b) the NL crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν max = Δ ν eff 2 η η + L
1 Δ ν eff 2 = 1 Δ ν L + f 2 ( FSR ) 2 ( η + L )

Metrics