Abstract

Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals

Anatoli Borovoi, Alexander Konoshonkin, Natalia Kustova, and Hajime Okamoto
Opt. Express 20(27) 28222-28233 (2012)

Power laws for backscattering by ice crystals of cirrus clouds

Alexander Konoshonkin, Anatoli Borovoi, Natalia Kustova, and Jens Reichardt
Opt. Express 25(19) 22341-22346 (2017)

Backscatter by azimuthally oriented ice crystals of cirrus clouds

Alexander Konoshonkin, Zhenzhu Wang, Anatoli Borovoi, Natalia Kustova, Dong Liu, and Chenbo Xie
Opt. Express 24(18) A1257-A1268 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).
  2. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
    [Crossref]
  3. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41(21), 4245–4257 (2002).
    [Crossref] [PubMed]
  4. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43(36), 6620–6628 (2004).
    [Crossref] [PubMed]
  5. C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
    [Crossref]
  6. M. Hayman, S. Spuler, and B. Morley, “Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain,” Opt. Express 22(14), 16976–16990 (2014).
    [Crossref] [PubMed]
  7. H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16(6), 3931–3948 (2008).
    [Crossref] [PubMed]
  8. R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
    [Crossref]
  9. K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
    [Crossref]
  10. Y. S. Balin, B. V. Kaul, G. P. Kokhanenko, and I. E. Penner, “Observations of specular reflective particles and layers in crystal clouds,” Opt. Express 19(7), 6209–6214 (2011).
    [Crossref] [PubMed]
  11. A. G. Borovoi, “Light scattering by large particles: physical optics and the shadow-forming field” in Light scattering reviews, vol. 8.Ed. A.A. Kokhanovsky (Chichester: Springer-Praxis; 2013), p. 115–138.
  12. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20(12), 1356–1358 (1995).
    [Crossref] [PubMed]
  13. G. G. Gimmestad, “Re-examination of depolarization in lidar measurements,” Appl. Opt. 47(21), 3795–3802 (2008).
    [Crossref] [PubMed]
  14. Yu. Balin, B. Kaul, G. Kokhanenko, and D. Winker, “Application of circularly polarized laser radiation for sensing of crystal clouds,” Opt. Express 17(8), 6849–6859 (2009).
    [Crossref] [PubMed]
  15. A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25(18), 1388–1390 (2000).
    [Crossref] [PubMed]
  16. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 146, 181–189 (2014).
    [Crossref]
  17. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38(15), 2881–2884 (2013).
    [Crossref] [PubMed]
  18. K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 45-GHz cloud lidar: Its implication to microphysical retrievals,” J. Geophys. Res. 111(D22), D22213 (2006), doi:.
    [Crossref]
  19. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), Chap. 8.

2014 (2)

M. Hayman, S. Spuler, and B. Morley, “Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain,” Opt. Express 22(14), 16976–16990 (2014).
[Crossref] [PubMed]

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 146, 181–189 (2014).
[Crossref]

2013 (1)

2012 (1)

K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
[Crossref]

2011 (1)

2010 (2)

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

2009 (1)

2008 (2)

2006 (1)

K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 45-GHz cloud lidar: Its implication to microphysical retrievals,” J. Geophys. Res. 111(D22), D22213 (2006), doi:.
[Crossref]

2004 (1)

2002 (1)

2001 (1)

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[Crossref]

2000 (1)

1995 (1)

1986 (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

Balin, Y. S.

Balin, Yu.

Benson, S.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[Crossref]

Borovoi, A.

Chepfer, H.

Cho, H. M.

Delaval, A.

Flamant, P. H.

Gimmestad, G. G.

Grishin, I.

Hagihara, Y.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

Hayman, M.

Hogan, R. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

Hovenier, J. W.

Hu, Y.

Illingworth, A. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

Ishimoto, H.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

Kattawar, G. W.

Kaul, B.

Kaul, B. V.

Kayetha, V. K.

K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
[Crossref]

Kokhanenko, G.

Kokhanenko, G. P.

Konoshonkin, A.

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 146, 181–189 (2014).
[Crossref]

A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38(15), 2881–2884 (2013).
[Crossref] [PubMed]

Kustova, N.

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 146, 181–189 (2014).
[Crossref]

A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38(15), 2881–2884 (2013).
[Crossref] [PubMed]

Ledanois, G.

Liou, K. N.

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

Minnis, P.

Mishchenko, M. I.

Morley, B.

Naats, E.

Nasiri, S. L.

Noel, V.

O’Connor, E. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

Okamoto, H.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 45-GHz cloud lidar: Its implication to microphysical retrievals,” J. Geophys. Res. 111(D22), D22213 (2006), doi:.
[Crossref]

Oppel, U.

Penner, I. E.

Samokhvalov, I. V.

Sassen, K.

K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
[Crossref]

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[Crossref]

Sato, K.

K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 45-GHz cloud lidar: Its implication to microphysical retrievals,” J. Geophys. Res. 111(D22), D22213 (2006), doi:.
[Crossref]

Spuler, S.

Trepte, C.

Volkov, S. N.

Westbrook, C. D.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

Winker, D.

Yang, P.

Yoshida, R.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

Zhu, J.

K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
[Crossref]

Appl. Opt. (3)

Geophys. Res. Lett. (1)

K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Res. Lett. 39(20), L20805 (2012), doi:.
[Crossref]

J. Atmos. Sci. (1)

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[Crossref]

J. Geophys. Res. (3)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010), doi:.
[Crossref]

K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 45-GHz cloud lidar: Its implication to microphysical retrievals,” J. Geophys. Res. 111(D22), D22213 (2006), doi:.
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 146, 181–189 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Q. J. R. Meteorol. Soc. (1)

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136(646), 260–276 (2010).
[Crossref]

Other (2)

A. G. Borovoi, “Light scattering by large particles: physical optics and the shadow-forming field” in Light scattering reviews, vol. 8.Ed. A.A. Kokhanovsky (Chichester: Springer-Praxis; 2013), p. 115–138.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Altitude profiles in cirrus clouds observed on 30.03.2013 (a) and 14.04.2013 (b): the dimensionless backscatter (red and green) at the wavelengths 1064 nm and 532 nm, respectively (lower scale); the attenuated color ratio (black) and the polarization parameter (blue), (upper scale).
Fig. 2
Fig. 2 Polarization parameter d for arbitrarily oriented hexagonal ice plates (a) and columns (b). The solid and dashed curves correspond to the wavelength of 532 nm and 1064 nm, respectively, the diameters D of the hexagonal facets for both plates and columns are marked by the color: D = 10 µm (red), D = 30 µm (lilac), D = 50 µm (black), D = 100 µm (green), and D = 300 µm (blue).
Fig. 3
Fig. 3 Color ratios for quasi-horizontally oriented hexagonal ice plates (solid curves) and columns (dashed curves). The diameters D are marked by the color as in Fig. 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

X(z)=Cβ(z)exp[2τ(0,z)],
X(z)x(z)=C β m (z)exp[2 τ m (0,z)]exp[2 τ a (0,H)2 τ c (0,H)].
y(z)= X(z) x(z) = β m (z)+ β a (z)+ β c (z) β m (z) exp[2 τ a (z,H)+2 τ c (z,H)],
χ (z)= y (1) (z) y (2) (z) β m (2) (z) β m (1) (z) = β m (1) (z)+ β a (1) (z)+ β c (1) (z) β m (2) (z)+ β a (2) (z)+ β c (2) (z) exp[2 τ a (1) (z,H)2 τ a (2) (z,H)].
M=σ{1;1d;1+d;1+2d}.
δ l =d/(2d),
δ c =d/(1d).
p(t)=exp( t 2 /2 t eff 2 )/ 0 π/2 exp( t 2 /2 t eff 2 )sinβdβ .
σ hor = S 2 R/ λ 2 .

Metrics