Abstract

Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for larger signal amplification, we designed a multi-stage, successive-avalanche architecture which used nanowires, connected via choke inductors in a binary-tree layout. We demonstrated an avalanche detector with n = 8 parallel nanowires and achieved eight-fold signal amplification, with a timing jitter of 54 ps.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector

Shigehito Miki, Masahiro Yabuno, Taro Yamashita, and Hirotaka Terai
Opt. Express 25(6) 6796-6804 (2017)

Superconducting series nanowire detector counting up to twelve photons

Zili Zhou, Saeedeh Jahanmirinejad, Francesco Mattioli, Döndü Sahin, Giulia Frucci, Alessandro Gaggero, Roberto Leoni, and Andrea Fiore
Opt. Express 22(3) 3475-3489 (2014)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  2. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
    [Crossref]
  3. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  4. Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
    [Crossref]
  5. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
    [Crossref]
  6. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
    [Crossref]
  7. S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
    [Crossref] [PubMed]
  8. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
    [PubMed]
  9. Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
    [Crossref]
  10. Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
    [Crossref] [PubMed]
  11. M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
    [Crossref]
  12. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
    [Crossref] [PubMed]
  13. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
    [Crossref]
  14. R. Cristiano, M. Ejrnaes, A. Casaburi, S. Pagano, F. Mattioli, A. Gaggero, and R. Leoni, “Superconducting single photon detectors based on multiple cascade switches of parallel NbN nanowires,” in Proc. SPIE 8072, Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III, I. Prochazka and J. Fiurásek, eds. (2011), Vol. 8072, p. 807205.
  15. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
    [Crossref]
  16. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
    [Crossref]
  17. Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
    [Crossref] [PubMed]
  18. A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
    [Crossref]
  19. F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
    [Crossref]

2014 (3)

2013 (3)

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

2012 (3)

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
[PubMed]

2011 (2)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

2009 (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

2008 (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

2007 (3)

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Anant, V.

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Bellei, F.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Berggren, K. K.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Chen, J.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Chen, S.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Cristiano, R.

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Dane, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Dauler, E. A.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

De Fazio, D.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Ejrnaes, M.

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Fiore, A.

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20(5), 5017–5028 (2012).
[PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Frucci, G.

Gaggero, A.

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Gu, M.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

He, Y.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Hu, X.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Ivry, Y.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Jahanmirinejad, S.

Jia, T.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Kang, L.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Kerman, A. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Leoni, R.

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Liu, D.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Liu, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Marsili, F.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Mattioli, F.

Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, and A. Fiore, “Superconducting series nanowire detector counting up to twelve photons,” Opt. Express 22(3), 3475–3489 (2014).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

McCaughan, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Miki, S.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Molnar, R. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

Najafi, F.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Pagano, S.

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Quaranta, O.

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Rosenberg, D.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

Rosfjord, K. M.

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Sahin, D.

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

Terai, H.

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

Voronov, B.

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

Wan, C.

Wang, Z.

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Wu, P.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Xie, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Xu, W.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Yamashita, T.

Yang, J. K. W.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Yang, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

You, L.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, L.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Zhang, W.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhao, Q.

Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
[Crossref] [PubMed]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Zhou, Z.

AIP Adv. (1)

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Appl. Phys. B (1)

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104(3), 673–678 (2011).
[Crossref]

Appl. Phys. Lett. (4)

M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91(26), 262509 (2007).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

F. Najafi, F. Marsili, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(15), 152602 (2012).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

J. Appl. Phys. (1)

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2(5), 302–306 (2008).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

Other (1)

R. Cristiano, M. Ejrnaes, A. Casaburi, S. Pagano, F. Mattioli, A. Gaggero, and R. Leoni, “Superconducting single photon detectors based on multiple cascade switches of parallel NbN nanowires,” in Proc. SPIE 8072, Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III, I. Prochazka and J. Fiurásek, eds. (2011), Vol. 8072, p. 807205.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic diagram of an n-SNAP in conventional avalanche architecture. Nanowires from D1 to Dn are paralleled directly. A choke inductor (LS) is connected in series to block the current to leak to the load. (b) Equivalent circuit of a detection nanowire. L0 is the kinetic inductance of the nanowire. Rn is the time-varying resistance when the switch is open by a photon detection. (c) Schematic diagram of an 8-*SNAP. Dx and ix represent the xth individual nanowire and the current passing through it, respectively. The colored arrows show the successive avalanches A1 (red), A2 (green) and A3 (blue) when D1 (leftmost detection nanowire) is triggered. (d) SEM images of an 8-*SNAP. The whole device is labeled according to the corresponding circuit parts shown in (c). (e) A close-up of the photon-sensitive individual nanowires, consisting of eight 50 nm wide nanowires.
Fig. 2
Fig. 2 (a) Electrothermal simulation of the normalized currents through the eight nanowires in an 8-*SNAP. When the current passing through the nanowire exceeds ICN, the avalanche processes are triggered, denoted as A1, A2 and A3. (b) Electrothermal simulation of the output pulses at IBN of 0.80ICN (red), 0.75ICN (green), 0.70ICN (blue) and 0.65ICN (purple). The dashed lines show the levels of the output current corresponding to the cases that the last avalanche is A1, A2 and A3. (c) DDE vs normalized IB for the SNSPD (black) and the 8-*SNAP illuminated at different incident photon fluxes as shown in the legend. As the photon flux increases, depicted by the arrow, the DDE curves of the 8-*SNAP shift away from the DDE curve of the SNSPD. The dashed arrow shows the inflection point of the DDE curves, which is 0.78IC8 and is the experimental avalanche current of the 8-*SNAP, IAV_E. Curves measured under low incident photon fluxes are noisy when IB is close to the critical current, because the photon detection count rate is lower than the dark count rate, resulting in high background noise.
Fig. 3
Fig. 3 (a) Traces of a single pulse from the 8-*SNAP (red) and the SNSPD (blue). The signal is extracted from the peak value of the average pulses (not shown here) and the peak-to-peak noise is taken from the traces before the pulses arrive in a time window of 100 ns. The inset figure shows the noise floor of our 8-*SNAP is nearly identical to the noise floor of the SNSPD. (b) Timing jitter versus normalized IB. The inset figure shows the jitter performance at 0.86IC8. The delay distribution is fitted to a Gaussian profile.

Metrics