Abstract

The complete vector information of converging terahertz (THz) beams with linear, circular, and cylindrical vortex polarization are precisely measured by using a THz digital holographic imaging system. The transverse (Ex, Ey) and longitudinal (Ez) polarization components of the THz fields around the focal point are separately obtained utilizing the detection crystals with different crystalline orientations. The measured results are in good agreement with the theoretical expectations. This imaging technique provides an effective way for revealing the vector diffraction properties of the THz electro-magnetic waves.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations

Xinke Wang, Jing Shi, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, and Yan Zhang
Opt. Express 24(7) 7178-7190 (2016)

Vectorial diffraction properties of THz vortex Bessel beams

Zhen Wu, Xinke Wang, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, Yue Yu, and Yan Zhang
Opt. Express 26(2) 1506-1520 (2018)

Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal

Shijun Ge, Peng Chen, Zhixiong Shen, Wenfeng Sun, Xinke Wang, Wei Hu, Yan Zhang, and Yanqing Lu
Opt. Express 25(11) 12349-12356 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  3. Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett. 31(6), 820–822 (2006).
    [Crossref] [PubMed]
  4. J. Lin, Y. Ma, P. Jin, G. Davies, and J. B. Tan, “Longitudinal polarized focusing of radially polarized sinh-Gaussian beam,” Opt. Express 21(11), 13193–13198 (2013).
    [Crossref] [PubMed]
  5. J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
    [Crossref]
  6. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [Crossref] [PubMed]
  7. Y. J. Zhang and J. P. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009).
    [Crossref] [PubMed]
  8. Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  10. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
    [Crossref]
  11. G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
    [Crossref]
  12. C. Ecoffey and T. Grosjean, “Far-field mapping of the longitudinal magnetic and electric optical fields,” Opt. Lett. 38(23), 4974–4977 (2013).
    [Crossref] [PubMed]
  13. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  14. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
    [Crossref]
  15. C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20(11), 12303–12317 (2012).
    [Crossref] [PubMed]
  16. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007).
    [Crossref] [PubMed]
  17. M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared Milli. Terahz. Waves 34(11), 682–708 (2013).
    [Crossref]
  18. A. Nahata and W. Q. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
    [Crossref] [PubMed]
  19. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
    [Crossref]
  20. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
    [Crossref] [PubMed]
  21. X. K. Wang, W. Xiong, W. F. Sun, and Y. Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography,” Opt. Express 20(7), 7706–7715 (2012).
    [Crossref] [PubMed]
  22. D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
    [Crossref]
  23. X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21(2), 2337–2346 (2013).
    [Crossref] [PubMed]
  24. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref] [PubMed]
  25. Z. P. Jiang, X. G. Xu, and X.-C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39(17), 2982–2987 (2000).
    [Crossref] [PubMed]
  26. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref] [PubMed]
  27. Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
    [Crossref]
  28. Q. W. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002).
    [Crossref]
  29. N. C. Van Der Valk, W. A. Van Der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
    [Crossref] [PubMed]
  30. J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
    [Crossref]
  31. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138(6B), 1561–1565 (1965).
    [Crossref]
  32. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959).
    [Crossref]
  33. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
    [Crossref]

2013 (6)

J. Lin, Y. Ma, P. Jin, G. Davies, and J. B. Tan, “Longitudinal polarized focusing of radially polarized sinh-Gaussian beam,” Opt. Express 21(11), 13193–13198 (2013).
[Crossref] [PubMed]

C. Ecoffey and T. Grosjean, “Far-field mapping of the longitudinal magnetic and electric optical fields,” Opt. Lett. 38(23), 4974–4977 (2013).
[Crossref] [PubMed]

M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared Milli. Terahz. Waves 34(11), 682–708 (2013).
[Crossref]

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21(2), 2337–2346 (2013).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (2)

Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
[Crossref]

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (3)

2006 (2)

2005 (2)

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

N. C. Van Der Valk, W. A. Van Der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
[Crossref] [PubMed]

2004 (2)

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (2)

J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Q. W. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002).
[Crossref]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

2000 (2)

1983 (1)

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

1965 (1)

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138(6B), 1561–1565 (1965).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Aguilar, R. V.

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Armitage, N. P.

M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared Milli. Terahz. Waves 34(11), 682–708 (2013).
[Crossref]

C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20(11), 12303–12317 (2012).
[Crossref] [PubMed]

Bai, J. P.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Biss, D. P.

Boivin, A.

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138(6B), 1561–1565 (1965).
[Crossref]

Brown, T. G.

Capasso, F.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Chon, J. W. M.

J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Cui, Y.

Davies, G.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Ecoffey, C.

Feng, S.

Feng, S. F.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Fontana, J. R.

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Gan, X. S.

J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Genevet, P.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Grosjean, T.

Gu, M.

J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Hangyo, M.

Helm, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Higuchi, T.

Hirota, Y.

Hu, D.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Hubrich, R.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Imai, R.

Jagadish, C.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Jiang, Z. P.

Jin, G. F.

Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
[Crossref]

Jin, P.

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Kan, Q.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Kanda, N.

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Kazanskiy, N. L.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Khonina, S. N.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Klar, P. J.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Konishi, K.

Kozawa, Y.

Kuwata-Gonokami, M.

Leger, J. R.

Q. W. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

J. Lin, Y. Ma, P. Jin, G. Davies, and J. B. Tan, “Longitudinal polarized focusing of radially polarized sinh-Gaussian beam,” Opt. Express 21(11), 13193–13198 (2013).
[Crossref] [PubMed]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Ma, Y.

Makabe, H.

Mittendorff, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Miyaji, G.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Miyanaga, N.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Morris, C. M.

Nahata, A.

Neshat, M.

M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared Milli. Terahz. Waves 34(11), 682–708 (2013).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Ohbayashi, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Pantell, R. H.

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

Planken, P. C. M.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Sato, S.

Schneider, H.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Stier, A. V.

Sueda, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Sun, W. F.

Tan, H. H.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

Tan, J. B.

Tan, Q. F.

Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
[Crossref]

Tani, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsubakimoto, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

Van Der Marel, W. A.

Van Der Valk, N. C.

Volotovsky, S. G.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Wang, X. K.

Winnerl, S.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Wolf, E.

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138(6B), 1561–1565 (1965).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Xiong, W.

Xu, X. G.

Ye, J. S.

Youngworth, K. S.

Zhan, Q. W.

Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Q. W. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002).
[Crossref]

Zhang, X.-C.

Zhang, Y.

Zhang, Y. J.

Zheng, Z.

Zhou, Z. H.

Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
[Crossref]

Zhu, W. Q.

Adv. Opt. Mater. (1)

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light–theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72(1), 109–113 (2001).
[Crossref]

Appl. Phys. Lett. (3)

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, “Intense longitudinal electric fields generated from transverse electromagnetic waves,” Appl. Phys. Lett. 84(19), 3855–3857 (2004).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[Crossref]

J. W. M. Chon, X. S. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

J. Appl. Phys. (1)

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared Milli. Terahz. Waves 34(11), 682–708 (2013).
[Crossref]

J. Mod. Opt. (1)

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

J. Opt. (1)

Z. H. Zhou, Q. F. Tan, and G. F. Jin, “Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings,” J. Opt. 13(7), 075004 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

New J. Phys. (1)

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Opt. Commun. (1)

Q. W. Zhan and J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002).
[Crossref]

Opt. Express (10)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

X. K. Wang, W. Xiong, W. F. Sun, and Y. Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography,” Opt. Express 20(7), 7706–7715 (2012).
[Crossref] [PubMed]

C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20(11), 12303–12317 (2012).
[Crossref] [PubMed]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[Crossref] [PubMed]

X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express 21(2), 2337–2346 (2013).
[Crossref] [PubMed]

J. Lin, Y. Ma, P. Jin, G. Davies, and J. B. Tan, “Longitudinal polarized focusing of radially polarized sinh-Gaussian beam,” Opt. Express 21(11), 13193–13198 (2013).
[Crossref] [PubMed]

A. Nahata and W. Q. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[Crossref] [PubMed]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007).
[Crossref] [PubMed]

Y. J. Zhang and J. P. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138(6B), 1561–1565 (1965).
[Crossref]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) THz digital holographic imaging system. (b) A quartz THz quarter wave plate (TQWP) is used to convert the linear polarization to the circular polarization. (c) A TQWP and a THz wire radial polarizer (TWRP) are used to convert the linear polarization into the cylindrical vortex polarization.
Fig. 2
Fig. 2 Focusing process of a linear polarization THz light. (a) Longitudinal amplitude distribution and (b) corresponding phase distribution of E x around the focal point when a linearly polarized THz radiation is focused. The frequency of the radiation is 0.7 THz. (c) The corresponding amplitude and (d) phase distributions of E y . (e) Degree of polarization on the optical axis.
Fig. 3
Fig. 3 (a) Measured and (b) simulated transverse amplitude distributions of the E z component on the planes of z = −10 mm, −5 mm, 0 mm, 5 mm, and 10 mm, respectively. The polarization of the focused 0.7 THz radiation is linear. (c) Measured and (d) simulated longitudinal amplitude distribution of the E z component on the x-z plane. Corresponding (e) measured and (f) simulated transverse wrapped phase maps. (g) Measured and (h) simulated longitudinal phase distributions.
Fig. 4
Fig. 4 (a) Normalized transverse and (b) longitudinal amplitude profiles of the E x and E z components for 0.7 THz radiation. (c) Normalized transverse and (d) longitudinal amplitude profiles of the E z components for 0.3 THz, 0.5 THz, 0.7 THz, and 0.9 THz, respectively. (e) Normalized transverse and (f) longitudinal amplitude profiles of the E z components focused by lenses with 25 mm and 50 mm focal lengths, respectively.
Fig. 5
Fig. 5 (a) Longitudinal amplitude distribution and (b) corresponding phase distribution of E x for a focused circularly polarized THz radiation. The frequency of the radiation is 0.7 THz. (c) Longitudinal amplitude distribution and (d) corresponding phase distribution of E y . (e) Phase values φ x and φ y of E x and E y along the optical axis and their subtraction φ y φ x .
Fig. 6
Fig. 6 (a) Measured and (b) simulated transverse amplitude distributions of the E z component for a focused circularly polarized THz radiation on the planes of z = −10 mm, −5 mm, 0 mm, 5 mm, and 10 mm, respectively. The frequency of the radiation is 0.7 THz. (c) Measured and (d) simulated longitudinal amplitude distributions of the E z component on the x-z plane. (e) Measured and (f) simulated transverse phase distributions of the E z component for a focused circularly polarized THz radiation on the planes of z = −10 mm, −5 mm, 0 mm, 5 mm, and 10 mm, respectively. (g) Measured and (h) simulated longitudinal phase distributions of the E z component on the x-z plane.
Fig. 7
Fig. 7 (a) Schematic drawing and (b) photograph of the THz wire radial polarizer. (c) Measured amplitude and (d) phase distributions of the E x component of the unfocused cylindrically vortex polarized light for 0.7 THz and (e) amplitude and (f) phase distributions of the E y component. (g)-(j) Corresponding amplitude and phase distributions of the simulation results.
Fig. 8
Fig. 8 (a) Measured and (b) simulated transverse amplitude distributions of the E r component for a focused cylindrically vortex polarized THz beam on the planes of z = −10 mm, −5 mm, 0 mm, 5 mm, and 10 mm. (c) Measured and (d) simulated longitudinal amplitude distributions of the E r component on the x-z plane. (e) Measured and (f) simulated transverse wrapped phase maps. (g) Measured and (h) simulated longitudinal phase distribution.
Fig. 9
Fig. 9 Measured and simulated amplitude and phase distributions of E z for a focused cylindrically vortex polarized THz beam. (a) shows the measured transverse amplitude distributions of the E z component on the planes of z = −10 mm, −5 mm, 0 mm, 5 mm, and 10 mm. (c) is the longitudinal amplitude distribution of the E z component on the x-z plane. (e) and (g) are the corresponding transverse and longitudinal wrapped phase maps. (b), (d), (f), and (h) are the corresponding simulation results of the amplitude and phase by using the modified Richards-Wolf formula.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E z =2Acosϕ 0 α cosθ sin 2 θ J 1 ( krsinθ )exp( jkzcosθ )dθ ,
E z =exp( jπ/2 ) E xz + E yz .
E r = E x cosϕ+ E y sinϕ.
E r =jAexp( jϕ ) 0 α cosθ sinθcosθ[ J 0 ( krsinθ ) J 2 ( krsinθ ) ]exp( jkzcosθ ) dθ,
E z =2Aexp( jϕ ) 0 α cosθ sin 2 θ J 1 ( krsinθ )exp( jkzcosθ ) dθ.

Metrics