Abstract

This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (−θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335pm/deg. and 125pm/deg. are achieved in the −θ and + θ directions, respectively, when the proposed sensing scheme is utilized.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber Mach-Zehnder interferometers for sensing applications

Lecheng Li, Li Xia, Zhenhai Xie, and Deming Liu
Opt. Express 20(10) 11109-11120 (2012)

High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai
Appl. Opt. 50(28) 5503-5507 (2011)

Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater

Tianqi Liu, Jing Wang, Yipeng Liao, Lei Yang, and Shanshan Wang
Opt. Express 27(17) 23905-23918 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Chen, L. Wang, and W. F. Liu, “Temperature-insensitive fiber Bragg grating tilt sensor,” Appl. Opt. 47(4), 556–560 (2008).
    [Crossref] [PubMed]
  2. B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
    [Crossref]
  3. B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
    [Crossref]
  4. X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
    [Crossref]
  5. H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
    [Crossref]
  6. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range,” J. Lightwave Technol. 29(11), 1714–1720 (2011).
    [Crossref]
  7. S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
    [Crossref]
  8. P. Munendhar, R. Aneesh, and S. K. Khijwania, “Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings,” Appl. Opt. 53(16), 3574–3580 (2014).
    [Crossref] [PubMed]
  9. R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
    [Crossref]
  10. Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
    [Crossref] [PubMed]
  11. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
    [Crossref] [PubMed]
  12. L.-Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
    [Crossref] [PubMed]
  13. S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
    [Crossref] [PubMed]
  14. L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
    [Crossref]
  15. C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
    [Crossref]
  16. Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, D. Feng, M. Hu, and Z. Feng, “Orientation-dependant inclinometer based on intermodal coupling of two-LP-modes in a polarization-maintaining photonic crystal fiber,” Opt. Express 21(15), 17576–17585 (2013).
    [Crossref] [PubMed]
  17. J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).
  18. Z. G. Zang and Y.-J. Zang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
    [Crossref]
  19. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
    [Crossref]
  20. P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  21. J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
    [Crossref]
  22. Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]

2014 (1)

2013 (4)

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, D. Feng, M. Hu, and Z. Feng, “Orientation-dependant inclinometer based on intermodal coupling of two-LP-modes in a polarization-maintaining photonic crystal fiber,” Opt. Express 21(15), 17576–17585 (2013).
[Crossref] [PubMed]

S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
[Crossref] [PubMed]

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

2012 (2)

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Z. G. Zang and Y.-J. Zang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[Crossref]

2011 (5)

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range,” J. Lightwave Technol. 29(11), 1714–1720 (2011).
[Crossref]

R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
[Crossref]

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

2010 (3)

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

L.-Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
[Crossref] [PubMed]

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

2008 (1)

2006 (2)

2005 (1)

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

2004 (1)

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
[Crossref]

Albert, J.

Amaral, L. M. N.

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Aneesh, R.

P. Munendhar, R. Aneesh, and S. K. Khijwania, “Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings,” Appl. Opt. 53(16), 3574–3580 (2014).
[Crossref] [PubMed]

R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
[Crossref]

Araújo, F. M.

Au, H. Y.

Bajic, J. S.

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Bao, H.

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

Chan, C. C.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

Chang, H. J.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Chang, H. P.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Chen, H. J.

Chena, Q.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chung, W. H.

Dong, X.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

Du, Y.

Fabris, J. L.

Falate, R.

Feng, D.

Feng, Z.

Ferreira, L. A.

Frazão, O.

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
[Crossref] [PubMed]

Fu, H. Y.

Guan, B. O.

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
[Crossref]

Guo, J.

Guo, T.

He, S.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

Hou, M.

Hsu, J. M.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Hu, K.

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

Hu, L.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Hu, M.

Jin, S.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

Jin, Y.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

Khijwania, S. K.

Lee, C. F.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Lee, C. L.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Li, C. M.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Li, Z.

Liu, N.

Liu, S.

Liu, S. Y.

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
[Crossref]

Liu, W. F.

Lu, P.

S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
[Crossref] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Ma, C. L.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Maharana, M.

R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
[Crossref]

Manojlovic, L. M.

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Munendhar, P.

P. Munendhar, R. Aneesh, and S. K. Khijwania, “Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings,” Appl. Opt. 53(16), 3574–3580 (2014).
[Crossref] [PubMed]

R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
[Crossref]

Ni, K.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

Peng, B. J.

B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Qiao, X.

Ribeiro, A. B. L.

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Rong, Q.

Santos, J. L.

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
[Crossref] [PubMed]

Shao, L. Y.

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

Shao, L.-Y.

Shen, C.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Shih, W. C.

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Shum, P.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

Slankamenac, M. P.

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Stupar, D. Z.

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Su, D.

Tam, H. Y.

H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range,” J. Lightwave Technol. 29(11), 1714–1720 (2011).
[Crossref]

R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50(25), 172–176 (2011).
[Crossref]

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
[Crossref]

Tian, Z.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Wang, L.

Wang, R.

Wang, Y.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yang, H.

Yang, J.

B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Yang, W. X.

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

Zang, Y.-J.

Z. G. Zang and Y.-J. Zang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[Crossref]

Zang, Z. G.

Z. G. Zang and Y.-J. Zang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[Crossref]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

Zhan, C.

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

Zhao, C. L.

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

Zhao, Y.

B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Zheng, Y. C.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Živanov, M. B.

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber MachZehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (4)

J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, and C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” IEEE Photon. Technol. Lett. 25(14), 1354–1357 (2013).
[Crossref]

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16(1), 224–226 (2004).
[Crossref]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(11), 2394–2396 (2005).
[Crossref]

IEEE Sens. J. (2)

B. J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

J. Appl. Phys. (1)

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

Z. G. Zang and Y.-J. Zang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[Crossref]

Meas. Sci. Technol. (1)

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21(2), 025203 (2010).
[Crossref]

Opt. Commun. (1)

H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, and S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Opt. Commun. 283(24), 5021–5024 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

J. S. Bajić, D. Z. Stupar, L. M. Manojlović, M. P. Slankamenac, and M. B. Živanov, “A simple, low-cost, high-sensitivity fiber-optic tilt sensor,” Sens. Actuators A Phys. 185, 33–38 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Developed directional ADTFMZI tilt sensor. (b) Top view of sensor structure.
Fig. 2
Fig. 2 (a) Operating principle of directional tilt sensor and (b) asymmetrical dual tapers, stretched under strain when sensor is inclined at + θ and −θ, respectively.
Fig. 3
Fig. 3 Numerical calculation of micro-strain effect for different taper waists (w) with the sensor tilts from 0° to 90°.
Fig. 4
Fig. 4 Variations of transmission interference spectra of sensor as tilt angle to (a) −θ and (b) + θ, respectively.
Fig. 5
Fig. 5 Sensitivities of spectral shifts of (a) Dip1 and (b) Dip2 to the tilt angle (θ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ p m = 2 2p+1 Δ n eff m L
ε (±θ)= mgsin(±θ) AE
Δ λ λ L L + 1 Δ n eff m (Δ n eff m ) ε ε
Δ λ ( θ ) λ ~ p e1 mgsin( θ ) A 1 E p e2 mgsin( θ ) A 2 E

Metrics