Abstract

Optical scatterometry is the state of art optical inspection technique for quality control in lithographic process. As such, any boost in its performance carries very relevant potential in semiconductor industry. Recently we have shown that coherent Fourier scatterometry (CFS) can lead to a notably improved sensitivity in the reconstruction of the geometry of printed gratings. In this work, we report on implementation of a CFS instrument, which confirms the predicted performances. The system, although currently operating at a relatively low numerical aperture (NA = 0.4) and long wavelength (633 nm) allows already the reconstruction of the grating parameters with nanometer accuracy, which is comparable to that of AFM and SEM measurements on the same sample, used as reference measurements. Additionally, 1 nm accuracy in lateral positioning has been demonstrated, corresponding to 0.08% of the pitch of the grating used in the actual experiment.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the full scattering matrix using coherent Fourier scatterometry

Nitish Kumar, Luca Cisotto, Sarathi Roy, Gopika K. P. Ramanandan, Silvania F. Pereira, and H. Paul Urbach
Appl. Opt. 55(16) 4408-4413 (2016)

Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach
Opt. Express 22(11) 13250-13262 (2014)

References

  • View by:
  • |
  • |
  • |

  1. “International technology roadmap for semiconductors,” (2012). Available from http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf .
  2. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
    [Crossref]
  3. E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat. Nano. 2(25), 25–32 (2007).
    [Crossref]
  4. J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
    [Crossref]
  5. H. P. Baltes, ed., Inverse Source Problems in Optics, Vol. 9 of Topics in Current Physics (Springer-Verlag, 1978).
    [Crossref]
  6. C. Raymond, “Overview of scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
    [Crossref]
  7. H. T. Huang and F. L. Terry-Jr, “Erratum to spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 468(1–2), 339–346 (2004).
    [Crossref]
  8. Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” App. Opt. 41, 4443–4450 (2002).
    [Crossref]
  9. P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
    [Crossref]
  10. H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
    [Crossref]
  11. H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
    [Crossref]
  12. M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
    [Crossref]
  13. V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
    [Crossref]
  14. M. Ryabko, S. Koptyaev, A. Shcherbakov, A. Lantsov, and S. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21, 24483–24489 (2013).
    [Crossref] [PubMed]
  15. R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
    [Crossref]
  16. L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
    [Crossref]
  17. E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
    [Crossref]
  18. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
    [Crossref] [PubMed]
  19. B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
    [Crossref]
  20. H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
    [Crossref]
  21. O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
    [Crossref]
  22. O. El Gawhary and S. Petra, “Method and apparatus for determining structure parameters of microstructures,” European patent (WO/2012/126718) and US patent US 20120243004 A1 (2012).
  23. N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
    [Crossref]
  24. R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
    [Crossref]
  25. N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
    [Crossref]
  26. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  27. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  28. L. Li, “Use of fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [Crossref]
  29. J. Hartmann, “Bemerkungen ueber den bau und die justierung von spektrographen,” Zeitschrift fuer Instrumentenkunde 20, 47–58 (1900).
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).
  31. W. H. Swann, “A survey of non-linear optimization techniques,” FEBS Letters 2, S39 (1969).
    [Crossref] [PubMed]

2013 (2)

M. Ryabko, S. Koptyaev, A. Shcherbakov, A. Lantsov, and S. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21, 24483–24489 (2013).
[Crossref] [PubMed]

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

2012 (4)

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

2011 (2)

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

2010 (3)

M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
[Crossref]

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

2009 (1)

2008 (3)

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
[Crossref]

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

2007 (1)

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat. Nano. 2(25), 25–32 (2007).
[Crossref]

2006 (1)

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

2005 (2)

C. Raymond, “Overview of scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

2004 (1)

H. T. Huang and F. L. Terry-Jr, “Erratum to spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 468(1–2), 339–346 (2004).
[Crossref]

2002 (1)

Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” App. Opt. 41, 4443–4450 (2002).
[Crossref]

1998 (1)

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

1996 (1)

1995 (1)

1981 (1)

1969 (1)

W. H. Swann, “A survey of non-linear optimization techniques,” FEBS Letters 2, S39 (1969).
[Crossref] [PubMed]

1900 (1)

J. Hartmann, “Bemerkungen ueber den bau und die justierung von spektrographen,” Zeitschrift fuer Instrumentenkunde 20, 47–58 (1900).

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

Asinovski, L.

L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
[Crossref]

Attota, R.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Bar, M.

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Bär, M.

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

Barillon, R.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Barnes, B.

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Beaglehole, D.

L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
[Crossref]

Bodermann, B.

M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
[Crossref]

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Boher, P.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Bunday, B.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Chaton, P.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Clarkson, M. T.

L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
[Crossref]

Coene, W.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Coene, W. M. J.

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

Coulombe, S. A.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

Desieres, Y.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Ding, Y.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Dixson, R.

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Dixson, R. G.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Edwards, C.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

El Gawhary, O.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

O. El Gawhary and S. Petra, “Method and apparatus for determining structure parameters of microstructures,” European patent (WO/2012/126718) and US patent US 20120243004 A1 (2012).

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).

Foucher, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Frenner, K.

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

Galindo, C.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Gaylord, T. K.

Georg, S.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Germer, T. A.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Goddard, L. L.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

Grann, E. B.

Gross, H.

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Halter, E.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Hartmann, J.

J. Hartmann, “Bemerkungen ueber den bau und die justierung von spektrographen,” Zeitschrift fuer Instrumentenkunde 20, 47–58 (1900).

Hazart, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Heckert, A.

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Huang, H. T.

H. T. Huang and F. L. Terry-Jr, “Erratum to spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 468(1–2), 339–346 (2004).
[Crossref]

Jun, J.

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Koptyaev, S.

Kramar, J. A.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Kumar, N.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

Kutchoukov, V. G.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Lantsov, A.

Leertouwer, H. L.

Leger, J. R.

Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” App. Opt. 41, 4443–4450 (2002).
[Crossref]

Leroux, T.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Li, L.

Lindberg, J.

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

McNeil, J. R.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

Minhas, B. K.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

Model, R.

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Moharam, M. G.

Montaner, D.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Montgomery, P.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Naqvi, S. S. H.

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

Nero, M. D.

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

Novak, E.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Oh, S.

Osten, W.

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

Patrick, H. J.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Paz, V. F.

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

Pereira, S. F.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

Peterhänsel, S.

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

Petit, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

Petra, S.

O. El Gawhary and S. Petra, “Method and apparatus for determining structure parameters of microstructures,” European patent (WO/2012/126718) and US patent US 20120243004 A1 (2012).

Pilarski, F.

M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
[Crossref]

Pirih, P.

Pommet, D. A.

Popescu, G.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

Potzick, J. E.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).

Rathfeld, A.

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

Rathsfeld, A.

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Raymond, C.

C. Raymond, “Overview of scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

Richter, J.

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

Richter, L. J.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Ro, H. W.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Roy, S.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Rudack, A.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Ryabko, M.

Shcherbakov, A.

Silver, R.

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

Soles, C. L.

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Stavenga, D. G.

Swann, W. H.

W. H. Swann, “A survey of non-linear optimization techniques,” FEBS Letters 2, S39 (1969).
[Crossref] [PubMed]

Terry-Jr, F. L.

H. T. Huang and F. L. Terry-Jr, “Erratum to spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 468(1–2), 339–346 (2004).
[Crossref]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).

Urbach, H. P.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).

Vladr, A. E.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Vogel, E.

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat. Nano. 2(25), 25–32 (2007).
[Crossref]

Wehling, M. F.

Wurm, M.

M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
[Crossref]

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Zhan, Q.

Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” App. Opt. 41, 4443–4450 (2002).
[Crossref]

AIP Conf. Proc. (1)

C. Raymond, “Overview of scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394–402 (2005).
[Crossref]

App. Opt. (2)

Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” App. Opt. 41, 4443–4450 (2002).
[Crossref]

B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and J. R. McNeil, “Ellipsometric scatterometry for the metrology of sub-0.1- μm-linewidth structures,” App. Opt. 37(22), 5112–5115 (1998).
[Crossref]

App. Phys. B (1)

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” App. Phys. B 105, 775–781 (2011).
[Crossref]

Appl. Phys. Lett. (1)

H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93, 233105 (2008).
[Crossref]

Appl. Surf. Sci. (1)

E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256(21), 6144–6152 (2010).
[Crossref]

FEBS Letters (1)

W. H. Swann, “A survey of non-linear optimization techniques,” FEBS Letters 2, S39 (1969).
[Crossref] [PubMed]

J. Opt. (1)

J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

JEOS:RP (2)

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent fourier scatterometry using scanning,” JEOS:RP 8, 13048 (2013).
[Crossref]

H. Gross, J. Richter, A. Rathfeld, and M. Bär, “Investigations on a robust profile model for the reconstruction of 2D periodic absorber lines in scatterometry,” JEOS:RP 5, 10053 (2010).
[Crossref]

Light: Sci. Appl. (2)

V. F. Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference fourier scatterometry,” Light: Sci. Appl. 1, e36 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1, e30 (2012).
[Crossref]

Measurement (1)

H. Gross, R. Model, M. Bar, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement 39(9), 782–794 (2006).
[Crossref]

Nat. Nano. (1)

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat. Nano. 2(25), 25–32 (2007).
[Crossref]

Opt. Express (2)

Phys. Status Solidi (a) (1)

L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging ellipsometry: quantitative analysis,” Phys. Status Solidi (a) 205(4), 764–771 (2008).
[Crossref]

Proc. SPIE (4)

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladr, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192 (2005).
[Crossref]

R. Silver, B. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008).
[Crossref]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Rev. Sci. Ins. (1)

M. Wurm, F. Pilarski, and B. Bodermann, “A new flexible scatterometer for critical dimension metrology,” Rev. Sci. Ins. 81, 023701 (2010).
[Crossref]

Thin Solid Films (1)

H. T. Huang and F. L. Terry-Jr, “Erratum to spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 468(1–2), 339–346 (2004).
[Crossref]

Zeitschrift fuer Instrumentenkunde (1)

J. Hartmann, “Bemerkungen ueber den bau und die justierung von spektrographen,” Zeitschrift fuer Instrumentenkunde 20, 47–58 (1900).

Other (4)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific computing (Cambridge University Press, 1992).

O. El Gawhary and S. Petra, “Method and apparatus for determining structure parameters of microstructures,” European patent (WO/2012/126718) and US patent US 20120243004 A1 (2012).

H. P. Baltes, ed., Inverse Source Problems in Optics, Vol. 9 of Topics in Current Physics (Springer-Verlag, 1978).
[Crossref]

“International technology roadmap for semiconductors,” (2012). Available from http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Scheme of the CFS illumination, data acquisition system and the grating parameters.
Fig. 2.
Fig. 2. Overlap between the diffracted orders depending upon the value of the overlap parameter F. The NA of the lens is marked with black circles.
Fig. 3.
Fig. 3. Schematics of the experimental setup. (a) Ray diagram of the experimental scheme (S1: He-Ne laser, FC: Fiber coupler, SMF: Single mode fiber, LED: Light emitting diode, BS: Beam splitter, P: Polarizer, L: lens, DP: Detector plane, BFP: Back focal plane, OP: Object plane (grating), MO: Microscope objective, TS: Piezo-controlled translation stage). (b) 3D illustration of the laboratory setup.
Fig. 4.
Fig. 4. Simulated and experimental far field intensity maps for a fixed bias value and the difference between the simulation and experiments. Wavefront for TE (a) and TM (a′) incident polarizations on the lens pupil. Far field intensity maps b, c and d (b′, c′ and d′) represent the simulation, experiment and the difference between them for best matched fit for TE (TM) incident light on the lens pupil and mixed output polarization. The diameter of the pupil in a and a′ is 8 mm.
Fig. 5.
Fig. 5. Degree of correlation between experimental far field intensity maps. (a) Correlation coefficients for positions separated by 20 nm for bias values within one period of the grating (b) The same as a), but only showing the range points where 0.9 < r < 1.
Fig. 6.
Fig. 6. Simulated and experimental far field for TE incident polarization on the lens pupil and no polarizer at the detector for the grating parameters corresponding to the minimized merit function. The bias position is changed by 100 nm between consecutive far fields (numbered 1 to 12).
Fig. 7.
Fig. 7. (a) Top view of the SEM image. (b) AFM cross section in the direction perpendicular to the grating lines. (c) Histogram of heights for each pixel of the AFM measurement.

Tables (1)

Tables Icon

Table 1. Comparative measurements of the grating parameters using different techniques.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F = λ NA * Λ .
δ ϕ = 2 π m δ x Λ ,
r = x y ( I x y ref I ¯ ref ) ( I x y I ¯ ) [ x y ( I x y ref I ¯ ref ) 2 ] [ x y ( I x y I ¯ ) 2 ] .
f ( a ) = j = 1 S 1 N i = 1 N [ I i , j ( m ) ( a ) I i , j ( s ) ( a ) ] 2 ,

Metrics