Abstract

We develop a novel discriminative sensing technique of strain and temperature using Brillouin scattering and fluorescence in an erbium-doped fiber (EDF). First, we show that the fluorescence intensity ratio (FIR), the ratio of the fluorescence intensities at two different wavelengths (1530 nm and 1565 nm in this experiment), is linearly dependent on temperature (with a coefficient of 5.6 × 10−4 /°C) but almost independent of strain. Then, by combined use of the FIR and the Brillouin frequency shift in an EDF, we experimentally demonstrate discriminative measurements of strain and temperature with four different sets of strain and temperature changes.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber

Young-Geun Han, Youngjoo Chung, Sang Bae Lee, Chang-Seok Kim, Myung Yung Jeong, and Moon Ki Kim
Appl. Opt. 48(12) 2303-2307 (2009)

Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber

Scott A. Wade, Stephen F. Collins, Kenneth T. V. Grattan, and Gregory W. Baxter
Appl. Opt. 39(18) 3050-3052 (2000)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  2. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).
  3. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett. 21(17), 1402–1404 (1996).
    [Crossref] [PubMed]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation –,” IEICE Trans. Commun. E83-C, 405–412 (2000).
  5. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  6. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).
  7. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
    [Crossref] [PubMed]
  8. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22(11), 787–789 (1997).
    [Crossref] [PubMed]
  9. X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344 (2004).
    [Crossref] [PubMed]
  10. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  11. W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [Crossref] [PubMed]
  12. M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
    [Crossref]
  13. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  14. T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
    [Crossref] [PubMed]
  15. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
    [Crossref] [PubMed]
  16. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
    [Crossref] [PubMed]
  17. Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
    [Crossref]
  18. E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley, 1994).
  19. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
    [Crossref]
  20. Y. Imai and T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4(1), 117–120 (1997).
    [Crossref]
  21. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
    [Crossref]
  22. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  23. V. K. Rai and S. B. Rai, “Temperature sensing behavior of the stark sublevels,” Spectrochim. Acta Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
    [Crossref]
  24. M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
    [Crossref]

2014 (1)

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

2013 (1)

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

2012 (1)

Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
[Crossref]

2010 (1)

2009 (2)

2008 (1)

2007 (2)

2004 (2)

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation –,” IEICE Trans. Commun. E83-C, 405–412 (2000).

1998 (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

1997 (2)

1996 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

1990 (1)

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1976 (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[Crossref]

Afshar V, S.

Bao, X.

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Ding, M.

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

Farhadiroushan, M.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Garus, D.

Gogolla, T.

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Handerek, V. A.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation –,” IEICE Trans. Commun. E83-C, 405–412 (2000).

Hayashi, N.

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
[Crossref]

He, Z.

Hokazono, T.

Y. Imai and T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4(1), 117–120 (1997).
[Crossref]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Hotate, K.

Imai, Y.

Y. Imai and T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4(1), 117–120 (1997).
[Crossref]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Kishi, M.

Koyama, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Krebber, K.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[Crossref]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).

Mizuno, Y.

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Nakamura, K.

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Parker, T. R.

Rai, S. B.

V. K. Rai and S. B. Rai, “Temperature sensing behavior of the stark sublevels,” Spectrochim. Acta Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

Rai, V. K.

V. K. Rai and S. B. Rai, “Temperature sensing behavior of the stark sublevels,” Spectrochim. Acta Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

Rogers, A. J.

Schliep, F.

Song, K. Y.

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[Crossref]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Tateda, M.

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[Crossref]

Yu, Q.

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Zou, L.

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations,” Appl. Phys. Lett. 102(19), 191906 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

IEICE Electron. Express (1)

M. Ding, N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin signal amplification in pumped erbium-doped optical fiber,” IEICE Electron. Express 11(18), 20140627 (2014).
[Crossref]

IEICE Trans. Commun. (2)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyama, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation –,” IEICE Trans. Commun. E83-C, 405–412 (2000).

J. Appl. Phys. (3)

Y. Mizuno, N. Hayashi, and K. Nakamura, “Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions,” J. Appl. Phys. 112(4), 043109 (2012).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” J. Lightwave Technol. 13, 1094–1096 (2001).

Jpn. J. Appl. Phys. (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[Crossref] [PubMed]

L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett. 21(17), 1402–1404 (1996).
[Crossref] [PubMed]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
[Crossref] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22(11), 787–789 (1997).
[Crossref] [PubMed]

X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344 (2004).
[Crossref] [PubMed]

Opt. Rev. (1)

Y. Imai and T. Hokazono, “Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 μm pumping,” Opt. Rev. 4(1), 117–120 (1997).
[Crossref]

Spectrochim. Acta Mol. Biomol. Spectrosc. (1)

V. K. Rai and S. B. Rai, “Temperature sensing behavior of the stark sublevels,” Spectrochim. Acta Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. EDF(A): erbium-doped fiber (amplifier), ESA: electrical spectrum analyzer, GPIB: general-purpose interface bus, LD: laser diode, OSA: optical spectrum analyzer, PC: polarization controller, PD: photo diode, WDM: wavelength division multiplexing.
Fig. 2
Fig. 2 Fluorescence spectra in EDF. The insets show the magnified views at around (a) 1530 nm and (b) 1565 nm.
Fig. 3
Fig. 3 FIR measured as a function of (a) temperature and (b) strain.
Fig. 4
Fig. 4 (a)–(d) BGS shift in the EDF measured with four different sets of strain and temperature changes.

Tables (1)

Tables Icon

Table 1 Summary of discriminative measurement results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ Δε ΔT ]= 1 C BFS ε C FIR T C BFS T C FIR ε [ C FIR T C BFS T C FIR ε C BFS ε ][ ΔBFS ΔFIR ],
[ Δε ΔT ]= 1 C BFS ε C FIR T [ C FIR T C BFS T 0 C BFS ε ][ ΔBFS ΔFIR ],

Metrics