Abstract

The LCOS spatial light modulator (LCOS-SLM) can generate desired multiple spot patterns (MSPs) via the application of suitable computer-generated-holograms (CGHs), but the MSP intensity distribution varies because ambient temperature affects the phase modulation characteristic and causes wavefront distortion. To generate high-optical-quality MSPs we use our hardware-compensated (with a Peltier system to even out phase modulation) and software-corrected (via multiplication of the CGH by temperature correction coefficients) LCOS-SLMs. Experimental results with a 14×14 MSP generation show that the hardware-compensated LCOS-SLM provides stable MSPs between 9 to 32 °C. The software-corrected LCOS-SLM provides uniform spots over twice the temperature range obtained with conventional SLM method. We confirm that our methods are highly efficient for use in two-photon excitation microscopy application such as multifocal mulitphoton microscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator

Naoya Matsumoto, Shigetoshi Okazaki, Yasuko Fukushi, Hisayoshi Takamoto, Takashi Inoue, and Susumu Terakawa
Opt. Express 22(1) 633-645 (2014)

Self-distortion compensation of spatial light modulator under temperature-varying conditions

Yu Takiguchi, Tomoko Otsu, Takashi Inoue, and Haruyoshi Toyoda
Opt. Express 22(13) 16087-16098 (2014)

Flicker minimization in an LCoS spatial light modulator

Jorge García-Márquez, Victor López, Arturo González-Vega, and Enrique Noé
Opt. Express 20(8) 8431-8441 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of laser induced-cracks inside a LiF single crystal by fs laser irradiation at multiple points,” Opt. Express 21(22), 26921–26928 (2013).
    [Crossref] [PubMed]
  2. S. Hasegawa and Y. Hayasaki, “Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing,” Opt. Lett. 39(3), 478–481 (2014).
    [Crossref] [PubMed]
  3. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [Crossref] [PubMed]
  4. J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multi-photon microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (3 edition, New York2006).
    [Crossref]
  5. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
    [Crossref] [PubMed]
  6. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003).
    [Crossref] [PubMed]
  7. T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
    [Crossref]
  8. Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
    [Crossref]
  9. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [Crossref] [PubMed]
  10. N. Matsumoto, S. Okazaki, Y. Fukushi, H. Takamoto, T. Inoue, and S. Terakawa, “An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator,” Opt. Express 22(1), 633–645 (2014).
    [Crossref] [PubMed]
  11. N. Matsumoto, T. Inoue, T. Ando, Y. Takiguchi, Y. Ohtake, and H. Toyoda, “High-quality generation of a multispot pattern using a spatial light modulator with adaptive feedback,” Opt. Lett. 37, 3135–3137 (2012).
    [Crossref] [PubMed]
  12. Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
    [Crossref]
  13. J. García-Márquez, V. López, A. González-Vega, and E. Noe, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 20(8) 8431–8441 (2012).
    [Crossref] [PubMed]
  14. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
    [Crossref] [PubMed]
  15. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
    [Crossref]
  16. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
    [Crossref]
  17. D. Prongué, H. P. Herzig, R. Dandliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31(26), 5706–5711 (1992).
    [Crossref] [PubMed]
  18. N. Fukuchi, Y. Igasaki, and T. Inoue, “Method of forming an optical pattern, optical pattern formation system, and optical tweezer,” Hamamatsu Photonics K.K., US Patent 5,442,178 (1995).
  19. J. A. Davis, I. Moreno, J. L. Martínez, T. J. Hernandez, and D. M. Cottrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Opt. 50(20), 3653–3657 (2011).
    [Crossref] [PubMed]
  20. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (3)

2011 (1)

2010 (2)

2009 (1)

2008 (1)

2007 (3)

2006 (1)

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

2003 (1)

2000 (1)

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

1992 (1)

Andersen, P.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

Ando, T.

Antolini, R.

Bahlmann, K.

Beck, R. J.

Bellve, K.

Bewersdorf, J.

J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multi-photon microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (3 edition, New York2006).
[Crossref]

Booth, M. J.

Caoa, Z.

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

Choudhury, A.

Cottrell, D. M.

Dandliker, R.

Davis, J. A.

Egner, A.

J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multi-photon microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (3 edition, New York2006).
[Crossref]

Fricke, M.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

Froner, E.

Fukuchi, N.

N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

N. Fukuchi, Y. Igasaki, and T. Inoue, “Method of forming an optical pattern, optical pattern formation system, and optical tweezer,” Hamamatsu Photonics K.K., US Patent 5,442,178 (1995).

Fukuda, N.

Fukushi, Y.

Gale, M. T.

Gao, B. Z.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

García-Márquez, J.

González-Vega, A.

Hand, D. P.

Hara, T.

N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Hasegawa, S.

Hayasaki, Y.

Hell, S. W.

J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multi-photon microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (3 edition, New York2006).
[Crossref]

Hellweg, D.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

Hernandez, T. J.

Herzig, H. P.

Hua, L.

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

Ianni, F.

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

N. Fukuchi, Y. Igasaki, and T. Inoue, “Method of forming an optical pattern, optical pattern formation system, and optical tweezer,” Hamamatsu Photonics K.K., US Patent 5,442,178 (1995).

Inoue, T.

Ishiguro, Y.

Itoh, H.

Jesacher, A.

Kirber, M.

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Kosicki, B.

Leonardo, R. D.

Lin, H.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

López, V.

Lua, X.

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

MacPherson, W. N.

Martínez, J. L.

Matsumoto, N.

McGonagle, W.

Miura, K.

Moreno, I.

Muaa, Q.

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

Nielsen, T.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

Niu, H.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

Noe, E.

Ohtake, Y.

Okazaki, S.

Parry, J. P.

Pavone, F. S.

Peng, X.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

Prongué, D.

Qin, W.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

Qu, J.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

Reich, R.

Ruocco, G.

Sacconi, L.

Sakakura, M.

Shao, Y.

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

Shephard, J. D.

Shimotsuma, Y.

So, P. T. C.

Taghizadeh, M. R.

Takamoto, H.

Takiguchi, Y.

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Tanaka, H.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Terakawa, S.

Toyoda, H.

Waddie, A.

Weston, N. J.

Xuana, L.

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2012).
[Crossref]

J. Microsc. (1)

T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” J. Microsc. 201(3), 368–376 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Comm. (1)

Z. Caoa, L. Xuana, L. Hua, X. Lua, and Q. Muaa, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Comm. 267(1), 69–73 (2006).
[Crossref]

Opt. Express (8)

J. García-Márquez, V. López, A. González-Vega, and E. Noe, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 20(8) 8431–8441 (2012).
[Crossref] [PubMed]

R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
[Crossref] [PubMed]

K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
[Crossref] [PubMed]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
[Crossref] [PubMed]

N. Matsumoto, S. Okazaki, Y. Fukushi, H. Takamoto, T. Inoue, and S. Terakawa, “An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator,” Opt. Express 22(1), 633–645 (2014).
[Crossref] [PubMed]

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of laser induced-cracks inside a LiF single crystal by fs laser irradiation at multiple points,” Opt. Express 21(22), 26921–26928 (2013).
[Crossref] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[Crossref] [PubMed]

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Other (2)

N. Fukuchi, Y. Igasaki, and T. Inoue, “Method of forming an optical pattern, optical pattern formation system, and optical tweezer,” Hamamatsu Photonics K.K., US Patent 5,442,178 (1995).

J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multi-photon microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (3 edition, New York2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of experimental setups. (a) Setup to measure the phase modulation term Δϕ̄ (V, T) and (b) setup to measure the constant offset term ϕx,y(0, T). The notations HM, SLM, and FT lens denote the half-mirror, spatial light modulator, and Fourier transform lens, respectively.
Fig. 2
Fig. 2 Average phase modulation amount Δϕ̄ (s, T) (a) with and (b) without the Peltier system as a function of input signal s when ambient temperature Troom was varied.
Fig. 3
Fig. 3 Comparison of the maximum value of phase modulation with and without the Peltier system. The solid and dashed lines represent the value with and without the Peltier system, respectively. The maximum value of the phase modulation without the Peltier system decreased by 1.05 %. On the other hand, the maximum value of the phase modulation with the Peltier system decreased by 0.08 %.
Fig. 4
Fig. 4 Output wavefront patterns: (a), (c), and (e) with the Peltier system. (b), (d), and (f) without the Peltier system. Images (a) and (b) were obtained at about 9 °C, (c) and (d) at about 23 °C, and (e) and (f) at about 33 °C.The phase value of the output wavefront is wrapped in the interval between 0 and 2 π [rad.].
Fig. 5
Fig. 5 Variation in the coefficients of certain lower-order Zernike polynomial terms (a) with and (b) without the Peltier system as a function of Troom. The patterns obtained when ϕx,y(0, T) was subtracted from ϕx,y(0, 23) were expanded in terms of Zernike polynomials.
Fig. 6
Fig. 6 Relation between ambient temperature and pattern uniformity when a 14 × 14 MSP grid was generated: (a) root mean square error and (b) peak-to-valley.
Fig. 7
Fig. 7 Focal spots near undesired zeroth-order diffraction light when the 14 × 14 MSP grid was generated by (a), (d), and (g) with the hardware compensation method, (b), (e), and (f) with the software correction method, and (c), (f), and (i) with conventional uncompensated method. (a), (b), and (c) were obtained at about 9 °C, (d), (e), and (f) at about 23 °C, and (g), (h), and (i) at about 33 °C.
Fig. 8
Fig. 8 Observed multiple fluorescence spots excited by (a), (d), and (g) the hardware compensation method, (b), (e), and (h) with software correction method, and (c), (f), and (i) with the conventional uncompensated method. (a), (b), and (c) were obtained at about 22 °C, and (d), (e), and (f) at about 30 °C. (g), (h), and (i) indicate normalized intensity distribution along the dashed line.

Tables (1)

Tables Icon

Table 1 The best (or most suitable), average and poorest (or most unsuitable) η values in the entire scanning area obtained using SLMs with the hardware compensation method, software correction method, and conventional uncompensated method.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ x , y ( V , T ) = Δ ϕ x , y ( V , T ) + ϕ x , y ( 0 , T ) = n ( V , T ) d x , y + ϕ x , y ( 0 , T ) ,
Φ x , y ( s , T ) = Φ x , y ( s , T 0 ) α ( T )
σ = 1 I ave m = 1 M [ I ( m ) I ave ] 2 M ,
η = I max I min 2 I ave ,

Metrics