Abstract

The spatially and spectrally resolved mode imaging method (S2) and lock-in detection technique are combined to allow for low signal gain measurements in double clad, Nd3+- doped fiber in the spectral region of 900 nm. The combination of these methods gives us the opportunity to measure the low signal gain, without disruption of the result by the amplified spontaneous emission (ASE). Results of the modal gain measurements are compared to numerical calculations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Up-converted emission and mode beating in Er3+- doped fibers

Patrycjusz Stremplewski and Czeslaw Koepke
Opt. Express 23(22) 28288-28299 (2015)

Pump absorption, laser amplification, and effective length in double-clad ytterbium-doped fibers with small area ratio

Yutong Feng, Pablo G. Rojas Hernández, Sheng Zhu, Ji Wang, Yujun Feng, Huaiqin Lin, Oscar Nilsson, Jiang sun, and Johan Nilsson
Opt. Express 27(19) 26821-26841 (2019)

Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber

Pei-Wen Kuan, Kefeng Li, Guang Zhang, Xin Wang, Lei Zhang, Gongxun Bai, Yuenhong Tsang, and Lili Hu
Opt. Mater. Express 3(6) 723-728 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  2. J. A. Buck, Fundamental of Optical Fibers, 2nd ed. (Wiley-Interscience, 2004).
  3. F. Mitschke, Fiber Optics, Physics and Technology (Springer-Verlag, Berlin Heidelberg, 2009).
  4. J. R. Marciante, V. V. Shkunov, and D. A. Rockwell, “Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area for single-mode kW operation in a compact coilable package,” Opt. Express 20(18), 20238–20254 (2012).
    [Crossref] [PubMed]
  5. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
    [Crossref] [PubMed]
  6. Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
    [Crossref] [PubMed]
  7. N. Andermahr and C. Fallnich, “Modeling of transverse mode interaction in large-mode-area fiber amplifiers,” Opt. Express 16(24), 20038–20046 (2008).
    [Crossref] [PubMed]
  8. A. V. Smith and J. J. Smith, “Mode competition in high power fiber amplifiers,” Opt. Express 19(12), 11318–11329 (2011).
    [Crossref] [PubMed]
  9. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 16601–16611 (2011).
    [Crossref] [PubMed]
  10. G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
    [Crossref] [PubMed]
  11. Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, and D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013).
    [Crossref] [PubMed]
  12. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
    [Crossref] [PubMed]
  13. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
    [Crossref] [PubMed]
  14. J. Le Gouët, J. Delaporte, L. Lombard, and G. Canat, “Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier,” Opt. Express 20(5), 5566–5575 (2012).
    [Crossref] [PubMed]
  15. J.W. Nicholson, J.C. Jasapara, A. Desantolo, E. Monberg, and F. Dimarcello, “Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging,” 2009 OSA/CLEO/IQEC (2009).
  16. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
    [Crossref]
  17. P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
    [Crossref]
  18. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [Crossref] [PubMed]
  19. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  20. D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
    [Crossref]
  21. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  22. P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, “Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers,” Opt. Express 20(22), 24295–24303 (2012).
    [Crossref] [PubMed]
  23. W. J. Miniscalco, Optical and electronic properties of rare earth ions in glasses. In M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers SE, CRC Press, New York 2001.
  24. R. Raisfeld and C. K. Jørgensen, Excited State Phenomena In Vitreous Materials (Elsevier, 1987) pp. 1–90.
  25. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [Crossref]
  26. S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
    [Crossref]
  27. W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
    [Crossref]
  28. R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20(4), 4436–4443 (2012).
    [Crossref] [PubMed]
  29. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [Crossref]
  30. S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
    [Crossref]
  31. J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
    [Crossref]

2013 (1)

2012 (6)

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
[Crossref] [PubMed]

J. Le Gouët, J. Delaporte, L. Lombard, and G. Canat, “Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier,” Opt. Express 20(5), 5566–5575 (2012).
[Crossref] [PubMed]

J. R. Marciante, V. V. Shkunov, and D. A. Rockwell, “Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area for single-mode kW operation in a compact coilable package,” Opt. Express 20(18), 20238–20254 (2012).
[Crossref] [PubMed]

G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
[Crossref] [PubMed]

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, “Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers,” Opt. Express 20(22), 24295–24303 (2012).
[Crossref] [PubMed]

R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20(4), 4436–4443 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (1)

S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
[Crossref]

2009 (3)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
[Crossref]

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

2004 (1)

2000 (1)

1995 (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

1992 (1)

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

1976 (1)

1971 (1)

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Alam, S.-U.

Andermahr, N.

Andrews, L. J.

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Aronne, A.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Bai, N.

Barankov, R. A.

Bigot, L.

Bigot-Astruc, M.

Brovelli, S.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Canat, G.

Corbett, B.

Dakss, M. L.

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Delaporte, J.

DeSantolo, A.

Dhar, A.

DiMarcello, F.

Duker, J. S.

Dulashko, Y.

Eidam, T.

Fallnich, C.

Fanelli, E.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Fini, J. M.

Fujimoto, J. G.

Galli, A.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Ghalmi, S.

Gloge, D.

Glynn, T. J.

S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
[Crossref]

Goldberg, L.

Grünsteidl, S.

S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
[Crossref]

Hassan, M.

Huber, G.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Inan, B.

Ip, E.

Jasapara, J. C.

Jauregui, C.

Jiang, Z.

Jollivet, C.

Jung, Y.

Kadwani, P.

Kang, Q.

Kliner, D. A. V.

Ko, T. H.

Koebele, C.

Koepke, C.

P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
[Crossref]

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Koplow, J. P.

Kowalczyk, A.

Kuschnerov, M.

Le Cocq, G.

Le Gouët, J.

Le Rouge, A.

Li, G.

Li, Z.

Limpert, J.

Lombard, L.

Lorenzi, R.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Marciante, J. R.

Marcuse, D.

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Meinardi, F.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Meng, L.

Miniscalco, W. J.

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Monberg, E.

Naftaly, M.

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Nicholson, J. W.

Ortiz, R.

Paleari, A.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Pernice, P.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Piatkowski, D.

P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
[Crossref]

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Poletti, F.

Quiquempois, Y.

Ramachandran, S.

Richardson, D. J.

Richardson, M.

Rockwell, D. A.

Rozanski, M.

P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
[Crossref]

Sahu, J.

Salsi, M.

Sarangan, A. M.

Schimpf, D. N.

Schülzgen, A.

Shah, L.

Shkunov, V. V.

Sigaev, V.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Sillard, P.

Sims, R. A.

Sleiffer, V. A. J. M.

Smith, A. V.

Smith, J. J.

Smith, R. C. G.

Sousa, J. M.

S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
[Crossref]

Spinolo, G.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Srinivasan, V. J.

Stremplewski, P.

P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
[Crossref]

Sukhov, S.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Tavazzi, S.

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

Teh, P. S.

Thompson, B. A.

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Tünnermann, A.

Várallyay, Z.

Veljanovski, V.

Wang, T.

Windeler, R. S.

Winfield, R.

Wisniewski, K.

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Wojtkowski, M.

Yablon, A. D.

Zemon, S.

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

P. Stremplewski, C. Koepke, D. Piatkowski, and M. Rozanski, “Nonmonotonic saturation characteristic and excited state absorption in long optical fiber,” Appl. Phys. B 103(1), 123–128 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 30–36 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

S. Brovelli, A. Galli, R. Lorenzi, F. Meinardi, G. Spinolo, S. Tavazzi, V. Sigaev, S. Sukhov, P. Pernice, A. Aronne, E. Fanelli, and A. Paleari, “Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses,” J. Non-Cryst. Solids 353(22-23), 2150–2156 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

S. Grünsteidl, J. M. Sousa, and T. J. Glynn, “Adiabatic bend transitions for large mode area fibres,” Opt. Commun. 283(19), 3727–3731 (2010).
[Crossref]

Opt. Express (15)

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

N. Andermahr and C. Fallnich, “Modeling of transverse mode interaction in large-mode-area fiber amplifiers,” Opt. Express 16(24), 20038–20046 (2008).
[Crossref] [PubMed]

Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode competition in high power fiber amplifiers,” Opt. Express 19(12), 11318–11329 (2011).
[Crossref] [PubMed]

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
[Crossref] [PubMed]

N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 16601–16611 (2011).
[Crossref] [PubMed]

R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20(4), 4436–4443 (2012).
[Crossref] [PubMed]

J. Le Gouët, J. Delaporte, L. Lombard, and G. Canat, “Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier,” Opt. Express 20(5), 5566–5575 (2012).
[Crossref] [PubMed]

J. R. Marciante, V. V. Shkunov, and D. A. Rockwell, “Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area for single-mode kW operation in a compact coilable package,” Opt. Express 20(18), 20238–20254 (2012).
[Crossref] [PubMed]

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
[Crossref] [PubMed]

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, “Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers,” Opt. Express 20(22), 24295–24303 (2012).
[Crossref] [PubMed]

G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 27051–27061 (2012).
[Crossref] [PubMed]

Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, and D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

D. Piatkowski, K. Wisniewski, C. Koepke, and M. Naftaly, “Excited state absorption spectroscopy of Nd3+ activated fluoroaluminate glass – experiment and simulation,” Opt. Mater. 31(3), 541–547 (2009).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Proc. SPIE (1)

W. J. Miniscalco, B. A. Thompson, M. L. Dakss, S. Zemon, and L. J. Andrews, “The measurement and analysis of cross sections for rare-earth-doped glasses,” Proc. SPIE 1581, 80–90 (1992).
[Crossref]

Other (5)

J. A. Buck, Fundamental of Optical Fibers, 2nd ed. (Wiley-Interscience, 2004).

F. Mitschke, Fiber Optics, Physics and Technology (Springer-Verlag, Berlin Heidelberg, 2009).

J.W. Nicholson, J.C. Jasapara, A. Desantolo, E. Monberg, and F. Dimarcello, “Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging,” 2009 OSA/CLEO/IQEC (2009).

W. J. Miniscalco, Optical and electronic properties of rare earth ions in glasses. In M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers SE, CRC Press, New York 2001.

R. Raisfeld and C. K. Jørgensen, Excited State Phenomena In Vitreous Materials (Elsevier, 1987) pp. 1–90.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Energy levels and transitions in Nd3+ used in calculations.
Fig. 2
Fig. 2 Switchable experimental setup for S2 and gain measurements.
Fig. 3
Fig. 3 Group delays of LP11 and LP02 modes with respect to the fundamental mode LP01 (measured - dots and squares, calculated - solid lines).
Fig. 4
Fig. 4 S2 measurement results in spectral range from 820 nm to 850 nm for 1.15 meter long section of the fiber:(a) - sum of the modules of Fourier transforms of spectra taken from every camera pixel, (b, c, d) - measured electric field distribution for LP01, LP11 and LP02 mode.
Fig. 5
Fig. 5 Numerical dispersion compensation effect on the 820 nm - 850 nm spectra: (a) - uncompensated, (b) compensated to minimize width of LP11 peak, (c) compensated to minimize width of LP02 peak.
Fig. 6
Fig. 6 GSA (a), ASE (b), and EST (c) in 1.7 m long Nd3+ doped double clad fiber, energy levels diagram and optical transitions of interest.
Fig. 7
Fig. 7 Measured (squares and points) and calculated (lines) gain: (a) - case 1, (b) - case 2, (c) - case 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(Δ τ g =0)=| E L P01 | 2 +| E L P02 | 2 +| E L P11 | 2 I( Δ τ g 1.4ps )=| E LP01 || E LP11 | I( Δ τ g 1.7ps )=| E LP01 || E LP02 |
I LP 01 p I LP 01 0 = | E LP 01 p | 2 | E LP 01 0 | 2 I LP 11 p I LP 11 0 = | E LP 11 p | 2 | E LP 11 0 | 2 I LP 02 p I LP 02 0 = | E LP 02 p | 2 | E LP 02 0 | 2 .
d N 0 dt = N 0 I p σ gsa514 h ν gsa514 + N 1 I s 1 σ se900 h ν se900 + N 1 I s 2 σ se1060 h ν se1060 + N 1 W r 1 =0 d N 1 dt = N 2 Wn r 2 N 1 I s 1 σ se900 h ν se900 N 1 I s 2 σ se1060 h ν se1060 N 1 W r 1 =0 d N 2 dt = N 0 I p σ gsa514 h ν gsa514 N 2 Wn r 2 =0
dP p M dz =P p M σ gsa514 N d x y N 0 ( x,y ) | E p M ( x,y ) | 2 dP s 1M dz =±P s 1M [ σ gsa900 N d x y N 0 ( x,y ) | E s 1M ( x,y ) | 2 σ se900 N d x y N 1 ( x,y ) | E s 1M ( x,y ) | 2 ] dP s 2 ± dz =±[ P s 2 ± σ se1060 N d x y N 1 ( x,y ) | E s 2 ( x,y ) | 2 + N d h ν s2 W r 1 x y N 1 ( x,y ) | E s 2 ( x,y ) | 2 ΔxΔy ]

Metrics