Abstract

A procedure is detailed for aligning the transmitted output states of a polarization modulated signal to the analyzer states of a polarizing discriminator in an analog photonic link. The steps in the procedure insure optimal amplitude modulation in the link. Experimental results are presented for biasing in two ways: either the DC bias on the modulator or a rotatable half-wave plate can be used. The corresponding theory is included.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Capacity of polarization and amplitude modulated links in the presence of atomospheric scintillation

B. F. Lamouroux and B. S. Prade
Appl. Opt. 16(7) 1993-1996 (1977)

Broadband linearized analog intersatellite microwave photonic link using a polarization modulator in a Sagnac loop

Zihang Zhu, Yongjun Li, Shanghong Zhao, Xuan Li, Kun Qu, and Jiajun Ma
Appl. Opt. 55(5) 1022-1028 (2016)

I/Q intensity-demodulation analog photonic link based on polarization modulator

Qiang Lv, Kun Xu, Yitang Dai, Yan Li, Jian Wu, and Jintong Lin
Opt. Lett. 36(23) 4602-4604 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
    [Crossref] [PubMed]
  2. T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
    [Crossref]
  3. X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. 25(14), 1373–1376 (2013).
    [Crossref]
  4. W. Li and J. Yao, “Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop,” Opt. Express 21(13), 15692–15697 (2013).
    [Crossref] [PubMed]
  5. W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
    [Crossref]
  6. S. Pan, C. Wang, and J. Yao, “Generation of a stable and frequency-tunable microwave signal using a polarization modulator and a wavelength-fixed notch filter,” in Optical Fiber Communications/National Fiber Optic Engineers Conference, Technical Digest (Optical Society of America2009), paper JWA51, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05032402 .
    [Crossref]
  7. X. Fu, H. Zhang, and M. Yao, “A New proposal of photonic analog-to-digital conversion based on polarization modulator and polarizer,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China2009) pp. 572–574.
    [Crossref]
  8. M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).
  9. H. Zhang, S. Pan, M. Huang, and X. Chen, “Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading,” Opt. Lett. 37(5), 866–868 (2012).
    [Crossref] [PubMed]
  10. A. L. Campillo and F. Bucholtz, “Chromatic dispersion effects in analog polarization-modulated links,” Appl. Opt. 45(12), 2742–2748 (2006).
    [Crossref] [PubMed]
  11. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  12. J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005).
  13. N. J. Frigo, F. Bucholtz, and C. V. McLaughlin, “Polarization in phase modulated optical links: Jones- and generalized Stokes-space analysis,” J. Lightwave Technol. 31(9), 1503–1511 (2013).
    [Crossref]
  14. N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
    [Crossref]
  15. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
    [Crossref]
  16. F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
    [Crossref]

2014 (1)

W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
[Crossref]

2013 (3)

2012 (1)

2007 (1)

2006 (1)

2005 (1)

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

2004 (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

1998 (1)

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

1990 (1)

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[Crossref]

Berolo, E.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

Bucholtz, F.

Bull, J. D.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Campillo, A. L.

Chen, X.

X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. 25(14), 1373–1376 (2013).
[Crossref]

H. Zhang, S. Pan, M. Huang, and X. Chen, “Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading,” Opt. Lett. 37(5), 866–868 (2012).
[Crossref] [PubMed]

Darcie, T. E.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

Fairburn, M.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Frigo, N. J.

N. J. Frigo, F. Bucholtz, and C. V. McLaughlin, “Polarization in phase modulated optical links: Jones- and generalized Stokes-space analysis,” J. Lightwave Technol. 31(9), 1503–1511 (2013).
[Crossref]

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Fu, X.

X. Fu, H. Zhang, and M. Yao, “A New proposal of photonic analog-to-digital conversion based on polarization modulator and polarizer,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China2009) pp. 572–574.
[Crossref]

Ghanipour, P.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Harmon, S. R.

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Huang, M.

Hutchinson, M. N.

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Jaeger, N. A. F.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

Jaeger, N. A. F. F.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

James, R.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

Kato, H.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Li, W.

W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
[Crossref]

X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. 25(14), 1373–1376 (2013).
[Crossref]

W. Li and J. Yao, “Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop,” Opt. Express 21(13), 15692–15697 (2013).
[Crossref] [PubMed]

McKinney, J. D.

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

McLaughlin, C. V.

Moye, A.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

Paiam, R.

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

Pan, S.

Rahmatian, F.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

Reid, A.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Singley, J. M.

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Urick, V. J.

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Walker, G. R.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[Crossref]

Walker, N. G.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[Crossref]

Wang, L. X.

W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
[Crossref]

Yao, J.

X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. 25(14), 1373–1376 (2013).
[Crossref]

W. Li and J. Yao, “Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop,” Opt. Express 21(13), 15692–15697 (2013).
[Crossref] [PubMed]

Yao, M.

X. Fu, H. Zhang, and M. Yao, “A New proposal of photonic analog-to-digital conversion based on polarization modulator and polarizer,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China2009) pp. 572–574.
[Crossref]

Zhang, H.

H. Zhang, S. Pan, M. Huang, and X. Chen, “Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading,” Opt. Lett. 37(5), 866–868 (2012).
[Crossref] [PubMed]

X. Fu, H. Zhang, and M. Yao, “A New proposal of photonic analog-to-digital conversion based on polarization modulator and polarizer,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China2009) pp. 572–574.
[Crossref]

Zhu, N. H.

W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar elecrodes,” IEEE Photon. Technol. Lett. 10(5), 675–677 (1998).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “Highly linear microwave photonic link using a polarization modulator in a Sagnac loop,” IEEE Photon. Technol. Lett. 26(1), 89–92 (2014).
[Crossref]

T. E. Darcie, R. Paiam, A. Moye, J. D. Bull, H. Kato, and N. A. F. F. Jaeger, “Intensity-noise suppression in microwave-photonic links using polarization modulation,” IEEE Photon. Technol. Lett. 17(9), 1941–1943 (2005).
[Crossref]

X. Chen, W. Li, and J. Yao, “Microwave photonic link with improved dynamic range using a polarization modulator,” IEEE Photon. Technol. Lett. 25(14), 1373–1376 (2013).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-Ghz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Other (5)

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005).

S. Pan, C. Wang, and J. Yao, “Generation of a stable and frequency-tunable microwave signal using a polarization modulator and a wavelength-fixed notch filter,” in Optical Fiber Communications/National Fiber Optic Engineers Conference, Technical Digest (Optical Society of America2009), paper JWA51, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05032402 .
[Crossref]

X. Fu, H. Zhang, and M. Yao, “A New proposal of photonic analog-to-digital conversion based on polarization modulator and polarizer,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China2009) pp. 572–574.
[Crossref]

M. N. Hutchinson, J. M. Singley, V. J. Urick, S. R. Harmon, J. D. McKinney, and N. J. Frigo, “Mitigation of photodiode induced even-order distortion in photonic links with predistortion modulation,” (submitted) (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Setup for alignment of polarization modulator for amplitude modulation.
Fig. 2
Fig. 2 Description of Eq. (3) in text. Light launched at + 45 to modulator’s slow axis experiences DC bias ϕ b and ac bias δ(t) , shown here at maximum excursion. The QWP rotates states by 90° about the + 45° axis. A HWP, oriented at φ in the lab frame, rotates states by 180° about an axis at 2φ to the x axis on the Poincare sphere.
Fig. 3
Fig. 3 Poincare sphere representations of the SOP on the PA ((a) and (c)) and at the input to the PBS ((b) and (d)) for steps 1 and 2 of the alignment process. In step 1, PC1 brings arbitrary initial SOP to LHP on the PA. In step 2, PC2 brings PBS SOP to LHP.
Fig. 4
Fig. 4 Poincare sphere representations of the SOP on the PA ((a) and (c)) and at the input to the PBS ((b) and (d)) for steps 3 and 4 of the alignment process. In step 3, HWP moves PBS SOP to + 45. In step 4, PC1 moves PBS SOP to LHP, so Z on PA corresponds to LHP at the PBS.
Fig. 5
Fig. 5 Poincare sphere representations of the SOP on the PA ((a) and (c)) and at the input to the PBS ((b) and (d)) for steps 5 and 6 of the alignment process. In step 5, PC1 puts PA SOP onto LHP. In step 6, HWP is returned to zero degrees (reversing step 3).
Fig. 6
Fig. 6 Poincare sphere representations of the SOP on the PA ((a) and (c)) and at the input to the PBS ((b) and (d)) for steps 7 and 8 of the alignment process.
Fig. 7
Fig. 7 RF output power for f=16.5GHz (red circles), 2f=33GHz (blue triangles) and photocurrent (green squares) along with the corresponding theory in black as a function of detector bias phase when using PolM DC bias. The comparison to actual DC bias voltage is bias phase (0.28π to 2.56π) and DC voltage (−17 V to 37 V).
Fig. 8
Fig. 8 RF output power for f=16.5GHz (red circles), 2f=33GHz (blue triangles) and photocurrent (green squares) along with the corresponding theory in black as a function of bias phase when using PolM DC bias which ranges from −17 V to 37V.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

J PolM (δ(t))=[ e i δ( t ) /2 0 0 e +i δ( t ) /2 ]
J QWP (θ)= 1 2 [ 1icos2θ isin2θ isin2θ 1icos2θ ]
J HWP (φ)=i[ cos2φ sin2φ sin2φ cos2φ ].
δ( t )= ϕ b + δ ac = ϕ b + ϕ 0 sin( Ω 1 t )= ϕ b +π( V rf / V π )sin( Ω 1 t )
[ E 1 E 2 ]= J HWP (φ) J QWP (π/4) J PolM (δ(t)) E 0 e iωt 2 [ 1 1 ] = i 2 [ cos( 2φ ) sin( 2φ ) sin( 2φ ) cos( 2φ ) ][ 1 i i 1 ][ e i δ( t ) /2 0 0 e +i δ( t ) /2 ][ 1 1 ] E 0 e iωt .
[ I 1 I 2 ]= I 0 [ 1+sin(δ(t)+4φ) 1sin(δ(t)+4φ) ]= I 0 [ 1+sin( ϕ 0 sin( Ω 1 t )+ ϕ b +4φ) 1sin( ϕ 0 sin( Ω 1 t )+ ϕ b +4φ) ]= I 0 [ 1+sin( δ ac + Φ b ) 1sin( δ ac + Φ b ) ]
I 1 I dc =( I 0 cos Φ b ) ϕ 0 sin Ω 1 t+ 1 4 ( I 0 sin Φ b ) ϕ 0 2 cos2 Ω 1 t+
I out = a 0 I dc + a 1 ( I 1 I dc )+ a 2 ( I 1 I dc ) 2 +...
I out = a 0 I 0 (1+sin Φ b )+( a 2 I 0 2 ϕ 0 2 /2) cos 2 Φ b +( a 1 I 0 cos Φ b ) ϕ 0 sin Ω 1 t +( I 0 /4)( a 1 sin Φ b 2 a 2 I 0 cos 2 Φ b ) ϕ 0 2 cos2 Ω 1 t+,
sin Φ b cos 2 Φ b = 2 a 2 I 0 a 1 .

Metrics