Abstract

We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient color filter array using resonant Si3N4 gratings

Mohammad Jalal Uddin and Robert Magnusson
Opt. Express 21(10) 12495-12506 (2013)

Guided-mode resonant polarization-controlled tunable color filters

Mohammad Jalal Uddin, Tanzina Khaleque, and Robert Magnusson
Opt. Express 22(10) 12307-12315 (2014)

Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme

Nghia Nguyen-Huu, Yu-Lung Lo, Yu-Bin Chen, and Tsai-Yu Yang
Appl. Opt. 50(4) 415-426 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23(9), 700–702 (1998).
    [Crossref] [PubMed]
  2. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
    [Crossref]
  3. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [Crossref]
  4. E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
    [Crossref] [PubMed]
  5. Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
    [Crossref]
  6. B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [Crossref]
  7. M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” Photon. Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  8. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
    [Crossref]
  9. Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
    [Crossref]
  10. T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
    [Crossref]
  11. Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
    [Crossref]
  12. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  13. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  14. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43(8), 1683–1694 (2004).
    [Crossref] [PubMed]
  15. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  16. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
    [Crossref]
  17. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
    [Crossref] [PubMed]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  19. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  20. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(5), 1019–1023 (1996).
    [Crossref]
  21. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [Crossref]
  22. E. Popov and M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18(11), 2886–2894 (2001).
    [Crossref] [PubMed]
  23. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24(9), 2880–2890 (2007).
    [Crossref] [PubMed]
  24. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17(10), 8051–8061 (2009).
    [Crossref] [PubMed]
  25. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).
  26. H. R. Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).
  27. Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
    [Crossref]

2014 (1)

Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
[Crossref]

2012 (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

2009 (4)

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[Crossref] [PubMed]

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17(10), 8051–8061 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (2)

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

2004 (3)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]

G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43(8), 1683–1694 (2004).
[Crossref] [PubMed]

2001 (1)

1999 (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

1998 (2)

1997 (3)

S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

1996 (3)

1995 (1)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Brundrett, D. L.

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Cheong, B.-H.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[Crossref] [PubMed]

Cho, E.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Cho, E.-H.

Cho, Y.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Choi, H.-Y.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[Crossref] [PubMed]

Friesem, A. A.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Furuta, T.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Gaylord, T. K.

Giessen, H.

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Gippius, N. A.

Glytsis, E. N.

Granet, G.

Grann, E. B.

Guizal, B.

Hane, K.

Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
[Crossref]

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Hasegawa, S.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Hatakeyama, M.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Herzig, H. P.

Huang, H.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Ichiki, K.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Kanamori, Y.

Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
[Crossref]

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Katchalski, T.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]

Kato, T.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Katsube, H.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Kerwien, N.

Kim, H.-S.

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[Crossref] [PubMed]

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
[Crossref]

Lalanne, P.

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Li, L.

Liu, Z. S.

Ma, D.-J.

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Moharam, M. G.

Morris, G. M.

Nevière, M.

Niederer, G.

Osten, W.

Ozaki, T.

Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
[Crossref]

Park, N.-C.

Park, Y.-P.

Pommet, D. A.

Popov, E.

Prudnikov, O.

Prudnikov, O. N.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Rafler, S.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Ruoff, J.

Schnieper, M.

Schuster, T.

Sentenac, A.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Shamir, J.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Shin, D.

Shin, S. T.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Sohn, J.-S.

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Teitelbaum, E.

T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]

Thiele, H.

Tibuleac, S.

Tikhodeev, S. G.

Toma, Y.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Watanabe, K.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Weiss, T.

Xianyua, W.

Yamauchi, K.

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Young, P. P.

Yu, J.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Zschokke, C.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Towards ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett. 84(4), 472–474 (2004).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

J. Opt. Soc. Am. A (7)

Jpn. J. Appl. Phys. (3)

Y. Toma, M. Hatakeyama, K. Ichiki, H. Huang, K. Yamauchi, K. Watanabe, and T. Kato, “Fast atom beam etching of glass materials with contact and non-contact masks,” Jpn. J. Appl. Phys. 36(12B12B), 7655–7659 (1997).
[Crossref]

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45(3A), 1883–1885 (2006).
[Crossref]

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

Y. Kanamori, T. Ozaki, and K. Hane, “Fabrication of ultrathin color filters for three primary colors using guided-mode resonance in silicon subwavelength gratings,” Opt. Rev. 21(5), 723–727 (2014).
[Crossref]

Photon. Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Other (2)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).

H. R. Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of (a) a square-lattice SWG, (b) a hexagonal-lattice SWG, and (c) incident light configuration. Λ and a are the period and diameter of the SWGs, respectively. θ and E are the incident angle and electric field of the incident light, respectively.
Fig. 2
Fig. 2 Calculated reflectivity as functions of wavelength and period at normal incidence in order to design each period of (a) red, (b) green, and (c) blue filters for a/Λ of 0.45, 0.40, and 0.40 and lattices of square, square, and hexagonal, respectively.
Fig. 3
Fig. 3 Calculated reflectivity of (a) red, (b) green, and (c) blue filters as functions of wavelength and incident angle.
Fig. 4
Fig. 4 Fabrication steps.
Fig. 5
Fig. 5 SEM photographs of fabricated SWGs for (a) red (Λ = 400 nm, a = 185 nm), (b) green (Λ = 340 nm, a = 151 nm), and (c) blue (Λ = 300 nm, a = 136 nm) filters.
Fig. 6
Fig. 6 Reflected colors of the fabricated SWGs under s-polarized white-light irradiation at θ = 0, 10, 30, and 50°.
Fig. 7
Fig. 7 (a) A picture and (b) an optical diagram of a home-built measurement system for variable-angle reflectance measurement in microscopic regions.
Fig. 8
Fig. 8 Measured and calculated reflectivity as a function of wavelength at θ = 0, 10, 30, and 50°.

Metrics