Abstract

We report the design of a short-wave infrared continuous-wave light source featuring a 20 mW average output power, and with a wavelength that can be freely selected in the 2000-2100 nm range amid a low power ripple. The operating principle relies on the simultaneous broadband parametric conversion of two seeds in a highly nonlinear silica fiber pumped in the L-band followed by amplification and equalization in an appended thulium- and holmium- doped fiber cascade directly pumped by their respective previous stage.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power parametric conversion from near-infrared to short-wave infrared

Adrien Billat, Steevy Cordette, Yu-Pei Tseng, Svyatoslav Kharitonov, and Camille-Sophie Brès
Opt. Express 22(12) 14341-14347 (2014)

Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson
Opt. Express 21(22) 26450-26455 (2013)

High gain holmium-doped fibre amplifiers

Nikita Simakov, Zhihong Li, Yongmin Jung, Jae M. O. Daniel, Pranabesh Barua, Peter C. Shardlow, Sijing Liang, Jayanta K. Sahu, Alexander Hemming, W. Andrew Clarkson, Shaif-Ul Alam, and David J. Richardson
Opt. Express 24(13) 13946-13956 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
    [Crossref] [PubMed]
  2. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  3. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [Crossref] [PubMed]
  4. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  5. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  6. http://www.eospace.com
  7. F. Gholami, B. P.-P. Kuo, S. Zlatanovic, N. Alic, and S. Radic, “Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber,” Opt. Express 21(9), 11415–11424 (2013).
    [Crossref] [PubMed]
  8. A. Billat, S. Cordette, Y. P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
    [Crossref] [PubMed]
  9. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [Crossref]
  10. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  11. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps Parametric Short-Wave Infrared Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
    [Crossref]
  12. S. Cordette, A. Billat, Y.-P. Tseng, and C.-S. Brès, “Tunable Thulium-Assisted Parametric Generation of 10 Gb/s Intensity Modulated Signals Near 2 µm,” in Optical Communication (ECOC 2014), 40th European Conference and Exhibition on (Cannes, 2014), paper P.1.12.

2014 (2)

2013 (4)

2011 (1)

2006 (1)

2004 (1)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Agger, S. D.

Alam, S. U.

Alic, N.

Baddela, N. K.

Becker, M.

Billat, A.

Brès, C.-S.

Carter, A.

Clarkson, W. A.

Cordette, S.

Danicic, A.

Ellis, A. D.

Gholami, F.

Gray, D. R.

Gruner-Nielsen, L.

Gunning, F. C.

Haub, J.

Hayes, J. R.

Heidt, A. M.

Hemming, A.

Jung, Y.

Kazovsky, L. G.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Kelly, B.

Kharitonov, S.

Kuo, B. P.-P.

Li, J.

Li, Z.

Liu, Y.

Luo, H.

MacSuibhne, N.

Marhic, M. E.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Moro, S.

Numkam, E.

O’Carroll, J.

Pálsdóttir, B.

Parmigiani, F.

Petropoulos, P.

Petrovich, M. N.

Phelan, R.

Poletti, F.

Povlsen, J. H.

Radic, S.

Richardson, D. J.

Simakov, N.

Slavík, R.

Sun, Z.

Tseng, Y. P.

Usechak, N. G.

Wheeler, N. V.

Wong, K. K.-Y.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Wooler, J. P.

Yan, Z.

Zhang, L.

Zhao, J.

Zhou, K.

Zlatanovic, S.

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Opt. Express (7)

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[Crossref] [PubMed]

S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

F. Gholami, B. P.-P. Kuo, S. Zlatanovic, N. Alic, and S. Radic, “Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber,” Opt. Express 21(9), 11415–11424 (2013).
[Crossref] [PubMed]

A. Billat, S. Cordette, Y. P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (3)

http://www.eospace.com

F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps Parametric Short-Wave Infrared Transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
[Crossref]

S. Cordette, A. Billat, Y.-P. Tseng, and C.-S. Brès, “Tunable Thulium-Assisted Parametric Generation of 10 Gb/s Intensity Modulated Signals Near 2 µm,” in Optical Communication (ECOC 2014), 40th European Conference and Exhibition on (Cannes, 2014), paper P.1.12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the idlers generation and amplification in each stage. The dashed arrows correspond to the pumps for each stage: blue arrow is the pump for both the parametric process and the TDFA, red arrow is the pump for the HDFA.
Fig. 2
Fig. 2 Experimental setup for SWIR light generation based on parametric conversion and amplification cascade: PC: Polarization controller, PM: Phase modulator, PRBS: Pseudo-random binary sequence, SOA: Semiconductor optical amplifier, EDFA: Erbium-doped fiber amplifier, TBF: Tunable band pass filter, MUX: 1310/1550 nm wavelength multiplexer, HNLF: Highly nonlinear fiber; TDF: Thulium-doped fiber, HDF: Holmium-doped fiber, ATT: optical attenuator.
Fig. 3
Fig. 3 Spectrum of the SWIR idlers for pumping at (a) 1566 nm and (b) 1567.5 nm. (c) Full-span spectrum of the output of the HNLF pumped at 1567.5 nm. (resolution: 1 nm). Raman scattering peaking at 1685 nm can be observed.
Fig. 4
Fig. 4 (a) Superimposed spectra at the output of the FOPA when signal 2 is tuned (resolution: 1 nm). (b) Spectrum of a SWIR idler (resolution: 0.1 nm).
Fig. 5
Fig. 5 (a) Spectrum at the output of the TDF when the longer wave idler is generated at 2048 nm. (b) Superimposed spectra of the amplified idlers when the signal is shifted from 1250 to 1300 nm. (resolution: 1 nm). (c) TDFA gain for a dual idler input. The gain for the fixed idler is indicated by the blue circle.
Fig. 6
Fig. 6 (a) Superimposed spectra of the amplified idlers when the signal is shifted from 1250 to 1300 nm. (resolution: 1 nm). (b) Spectral zoom on three amplified idlers at 2028 nm, 2048 nm and 2069 nm. (resolution: 0.1 nm).
Fig. 7
Fig. 7 (a) Ratio of the idler power over its corresponding signal power, as measured before the HNLF, after the conversion in the FOPA (blue), the amplification in the TDFA (green) and the amplification in the HDFA (red). (b) Optical signal to noise ratio for the tunable idler after TDF (blue) and HDF (green). These ratios were computed for a set of wavelength between 1970 and 2100 nm.

Metrics