Abstract

We present the detailed analysis and characterization of a silicon Michelson modulator with short 500 μm phase shifters and a low VπLπ of 0.72 V-cm under reverse bias. We investigate optical modulation of reverse biased p-n and forward biased p-i-n junctions. We demonstrate for the first time that error-free operation up to 40 Gbps is possible with lumped silicon interferometric modulators. For reverse bias operation, we show that even greater bandwidth can be obtained with lower impedance drivers. Forward bias operation with pre-emphasized signals is shown to have clean eye diagrams up to 40 Gbps, however, error counting reveals a strong dependence on test patterns and that error-free operation is achievable for short pattern lengths.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator

David Patel, Samir Ghosh, Mathieu Chagnon, Alireza Samani, Venkat Veerasubramanian, Mohamed Osman, and David V. Plant
Opt. Express 23(11) 14263-14287 (2015)

Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver

Zheng Yong, Stefan Shopov, Jared C. Mikkelsen, Robert Mallard, Jason C.C. Mak, Sorin P. Voinigescu, and Joyce K. S. Poon
Opt. Express 25(6) 6112-6121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, C. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in “High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on,” (2010), pp. 113–116.
  2. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  3. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
    [Crossref]
  4. R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  5. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
    [Crossref]
  6. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.
  7. X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
    [Crossref]
  8. S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.
  9. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18, 7994–7999 (2010).
    [Crossref] [PubMed]
  10. M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
    [Crossref]
  11. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low rf power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
    [Crossref] [PubMed]
  12. S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
    [Crossref]
  13. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
    [Crossref]
  14. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
    [Crossref] [PubMed]
  15. C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
    [Crossref]
  16. Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
    [Crossref]
  17. H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
    [Crossref] [PubMed]
  18. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311 (2008).
    [Crossref] [PubMed]
  19. P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall PTR, 1997).
  20. D. Derickson and M. Müller, Digital Communications Test and Measurement: High-Speed Physical Layer Characterization (Pearson Education, 2007).
  21. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).
    [Crossref]
  22. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
    [Crossref]
  23. M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).
  24. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
    [Crossref] [PubMed]
  25. M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

2014 (1)

2013 (6)

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
[Crossref]

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

2012 (4)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (1)

2007 (1)

1987 (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Absil, P.

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Akagawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Akiyama, S.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Alloatti, L.

Asghari, M.

Baba, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Baehr-Jones, T.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Baets, R.

Bakir, B. B.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Bennett, B.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bhattacharya, P.

P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall PTR, 1997).

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Campenhout, J. V.

Chagnon, M.

Charbonnier, B.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Chrostowski, L.

C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
[Crossref]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Chu, T.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Cunningham, J. E.

Cyr, M.

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Derickson, D.

D. Derickson and M. Müller, Digital Communications Test and Measurement: High-Speed Physical Layer Characterization (Pearson Education, 2007).

Dong, P.

Dumon, P.

Dunham, S.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Fang, Q.

Farias, G. B. D.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Fedeli, J.-M.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Feng, D.

Feng, N.-N.

Flueckiger, Jonas

C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
[Crossref]

Gagne, J.-F.

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Gagné, J.-F.

Galland, C.

Ghatak, A.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).
[Crossref]

Green, W. M.

Grosse, P.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Hillerkuss, D.

Hirayama, N.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Hochberg, M.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Horikawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Imai, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Jaeger, N. A. F.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Johnson, C.

H. Liu, C. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in “High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on,” (2010), pp. 113–116.

Komorowska, K.

Korn, D.

Koshino, K.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Krishnamoorthy, A. V.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Kwong, D. L.

Lam, C.

H. Liu, C. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in “High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on,” (2010), pp. 113–116.

Latrasse, C.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Lebreton, A.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Lentine, A.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

Lepage, G.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Lessard, S.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Leuthold, J.

Li, G.

Li, X.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Li, Y.

Li, Z.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Liang, H.

Liao, S.

Lim, A. E.-J.

Lim, A.-J.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Liow, T. Y.

Liu, H.

H. Liu, C. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in “High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on,” (2010), pp. 113–116.

Liu, Y.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Menezo, S.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Miller, D. A. B.

Müller, M.

D. Derickson and M. Müller, Digital Communications Test and Measurement: High-Speed Physical Layer Characterization (Pearson Education, 2007).

Myko, A.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Noguchi, Y.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Osman, M.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Painchaud, Y.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Pantouvaki, M.

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Paquet, C.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Plant, D.

Plant, D. V.

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Poulin, M.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

Reed, G.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Rooks, M. J.

Sekaric, L.

Seki, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Shafiiha, R.

Shi, W.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Song, J.

Soref, R. A.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Tao, S. H.

Thomson, D.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).
[Crossref]

Toyama, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Trotter, D.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

Usuki, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Van Campenhout, J.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Verheyen, P.

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Vlasov, Y.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

Vlasov, Y. A.

Wang, Y.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Watts, M.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

Xiao, X.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Xu, H.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Yang, S.

Young, R.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

Yu, H.

Yu, J.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Yu, M. B.

Yu, Y.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

Yun, H.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

Yun Wang, C. L.

C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
[Crossref]

Zhang, Y.

Zheng, D.

Zortman, W.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

IEEE Commun. Mag. (1)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (2)

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron. 16, 159–164 (2010).
[Crossref]

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25, 407–409 (2013).
[Crossref]

J. Lightw. Technol. (1)

Y. Liu, S. Dunham, T. Baehr-Jones, A.-J. Lim, G.-Q. Lo, and M. Hochberg, “Ultra-responsive phase shifters for depletion mode silicon modulators,” J. Lightw. Technol. 31, 3787–3793 (2013).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Opt. Express (7)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low rf power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
[Crossref] [PubMed]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311 (2008).
[Crossref] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18, 7994–7999 (2010).
[Crossref] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref] [PubMed]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref] [PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE, Photonics North 2013 (2)

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE, Photonics North 2013 8915, 89150V (2013).
[Crossref]

C. L. Yun Wang, Jonas Flueckiger, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE, Photonics North 2013 8915, 89150Y (2013).
[Crossref]

Other (8)

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in “European Conference on Optical Communications (ECOC),” (2014).

M. Watts, D. Trotter, R. Young, and A. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Group IV Photonics, 2008 5th IEEE International Conference on,” (2008), pp. 4–6.

P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall PTR, 1997).

D. Derickson and M. Müller, Digital Communications Test and Measurement: High-Speed Physical Layer Characterization (Pearson Education, 2007).

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).
[Crossref]

H. Liu, C. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in “High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on,” (2010), pp. 113–116.

S. Menezo, B. Charbonnier, G. B. D. Farias, D. Thomson, P. Grosse, A. Myko, J.-M. Fedeli, B. B. Bakir, G. Reed, and A. Lebreton, “Reflective silicon Mach Zehnder modulator with Faraday rotator mirror effect for self-coherent transmission,” in “OFC/NFOEC 2013,” (Optical Society of America, 2013), p. JTh2A.30.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in “Group IV Photonics (GFP), 2013 IEEE 10th International Conference on,” (2013), pp. 83–84.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Schematic of the Michelson interferometer modulator, and (b) simulated critical length for lumped element analysis.
Fig. 2.
Fig. 2. Cross-section of the fabricated (a) p-n, and (b) p-i-n MIM. Simulated depletion region (delineated by white lines), and doping density (positive for n-type) of the (c) p-n and (d) p-i-n junctions at 0 V.
Fig. 3.
Fig. 3. I–V measurement of p-n and p-i-n junctions with (a) reverse bias, and (b) forward bias. Measured transmission spectrum under reverse bias of (c) p-n and (d) p-i-n MIM. Measured transmission spectrum under forward bias of (e) p-n and (f) p-i-n MIM.
Fig. 4.
Fig. 4. Derived from measurement and simulated (a) phase shift, and (b) VπLπ of the p-n MIM with reverse bias voltage.
Fig. 5.
Fig. 5. Magnitude of measured (a) RF S11, and (b) EO S21 for different reverse bias voltages.
Fig. 6.
Fig. 6. (a) Small signal equivalent circuit of a lumped reverse biased modulator. Simulated and measured (b) magnitude, and (c) phase RF S11 of the p-n junction with 4 V reverse bias. (d) Simulated EO S21 response at 4 V reverse bias for different source impedances. (e) Comparison of simulated and measured EO S21 responses for two cases at 4 V reverse bias.
Fig. 7.
Fig. 7. Block diagram of a testing system for a short-reach communication link with a silicon photonics modulator.
Fig. 8.
Fig. 8. Optical eye diagrams at different bitrates.
Fig. 9.
Fig. 9. (a) ER measurement using the DCA, and (b) sensitivity curves for operation with and without a 50 Ω parallel resistor at different bitrates.
Fig. 10.
Fig. 10. (a) Equivalent circuit model with a parallel resistor, and (b) magnitude of measured EO S21 for different reverse bias voltages with a 50 Ω parallel resistor
Fig. 11.
Fig. 11. Optical eye diagrams at different bitrates for the modulator driven with a 50 Ω parallel resistor.
Fig. 12.
Fig. 12. (a) Two-tap feed forward equalizer for pre-emphasis of data signals. (b) Pre-emphasized driving signal. (c) Measured EO response at forward bias, and calculated FFE and total responses. (d) Sensitivity measurement for different pattern lengths for forward bias operation.
Fig. 13.
Fig. 13. Optical eye diagrams at different bitrates for the p-i-n modulator operated in forward bias with pre-emphasized PRBS-31 signal.

Tables (2)

Tables Icon

Table 1. Small signal circuit model for reverse biased junctions.

Tables Icon

Table 2. Estimated energy consumption of the MIM with reverse biased p-n, reverse biased p-n with a 50 Ω parallel resistor, and forward biased p-i-n with pre-emphasis.

Metrics