Abstract

For dynamic samples and/or for simple ease-of-use experiments, single-image phase contrast tomography is a very effective method for the 3D visualization of materials which would otherwise be indiscernible in attenuation based x-ray imaging. With binary samples (e.g. air-material) and monochromatic wavefields a transport-of-intensity (TIE)-based phase retrieval algorithm is known to retrieve accurate quantitative maps of the phase distribution. For mixed material samples and/or white beam radiation the algorithm can still produce useful qualitative tomographic reconstructions with significantly improved area contrast. The stability of the algorithm comes with a recognized associated loss of spatial resolution due to its essential behaviour as a low-pass filter. One possible answer to this is an image fusion technique that merges the slices reconstructed from raw phase contrast images and those after phase retrieval, where the improved contrast may be acquired without the associated loss of high-frequency information. We present this technique as a simple few-parameter Fourier method, which is easily tunable and highly compatible with current reconstruction steps.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography

Ilian Häggmark, William Vågberg, Hans M. Hertz, and Anna Burvall
Opt. Express 25(26) 33543-33558 (2017)

Edge illumination X-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm

Anna Zamir, Paul C. Diemoz, Fabio A. Vittoria, Charlotte K. Hagen, Marco Endrizzi, and Alessandro Olivo
Opt. Express 25(10) 11984-11996 (2017)

Phase-contrast tomography of single-material objects from few projections

G.R. Myers, D.M. Paganin, T.E. Gureyev, and S.C. Mayo
Opt. Express 16(2) 908-919 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
    [Crossref]
  2. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
    [Crossref]
  3. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  4. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
    [Crossref] [PubMed]
  5. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
    [Crossref]
  6. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
    [Crossref]
  7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
    [Crossref]
  8. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
    [Crossref] [PubMed]
  9. D. M. Paganin, Coherent X-ray Optics (Oxford University, New York, 2006).
  10. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1999).
  11. T. E. Gureyev, “Composite techniques for phase retrieval in the Fresnel region,” Opt. Commun. 220(1-3), 49–58 (2003).
    [Crossref]
  12. M. R. Teague, “Deterministic phase retrieval—A Green's function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
    [Crossref]
  13. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
    [Crossref] [PubMed]
  14. T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
    [Crossref] [PubMed]
  15. W. S. Rasband, “ImageJ,” http://rsbweb.nih.gov/ij/ (2008).
  16. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
    [Crossref] [PubMed]
  17. M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
    [Crossref] [PubMed]
  18. T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
    [Crossref]
  19. E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).
  20. Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
    [Crossref]
  21. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2008), pp. 954–954.
  22. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express 12(13), 2960–2965 (2004).
    [Crossref] [PubMed]
  23. P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
    [Crossref]
  24. M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).
  25. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [Crossref]
  26. C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
    [Crossref] [PubMed]
  27. B. A. Dowd, G. H. Campbell, R. B. Marr, V. V. Nagarkar, S. V. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” in (International Society for Optics and Photonics, 1999), 224–236.
  28. F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synchrotron Radiat. 19(6), 1029–1037 (2012).
    [Crossref] [PubMed]
  29. R. H. Huesman and G. T. Gullberg, "RECLBL library users manual—Donner algorithms for reconstruction tomography. Lawrence Berkeley Lab., Berkeley," (1977)
  30. P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
    [Crossref]
  31. G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
    [Crossref] [PubMed]
  32. R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
    [Crossref]

2013 (3)

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

2012 (2)

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synchrotron Radiat. 19(6), 1029–1037 (2012).
[Crossref] [PubMed]

2011 (2)

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

2010 (2)

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
[Crossref] [PubMed]

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

2008 (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

2007 (1)

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

2006 (2)

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

T. E. Gureyev, “Composite techniques for phase retrieval in the Fresnel region,” Opt. Commun. 220(1-3), 49–58 (2003).
[Crossref]

2002 (2)

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

1997 (1)

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

1996 (2)

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

1995 (2)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

1983 (1)

Abela, R.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Barré, S. F.

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

Baruchel, J.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Beltran, M. A.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
[Crossref] [PubMed]

Bertrand, A.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Betemps, R.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Böhler, P.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Buffière, J. Y.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Chen, Q.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Clavijo, C. A.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

Cloetens, P.

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

David, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Davis, T. J.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Dhal, B.

Diaz, A.

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Fouras, A.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

Frommherz, U.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Groso, A.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Guigay, J. P.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Gureyev, T. E.

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
[Crossref]

T. E. Gureyev, “Composite techniques for phase retrieval in the Fresnel region,” Opt. Commun. 220(1-3), 49–58 (2003).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Haas, D.

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

Hauser, N.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Hayes, J.

Henein, S.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Hintermüller, C.

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

Hooper, S. B.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

Irvine, S.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Isenegger, A.

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Kitchen, M. J.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
[Crossref] [PubMed]

Koehler, T.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Köhler, R.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Krapp, H. G.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Lange, M.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Lovric, G.

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

Lübbert, D.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

Mader, K.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Mancuso, A.

Marone, F.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synchrotron Radiat. 19(6), 1029–1037 (2012).
[Crossref] [PubMed]

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

Martens, G.

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Mayo, S. C.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

Meister, D.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Mikuljan, G.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Miller, P. R.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

Modregger, P.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

Mokso, R.

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Nesterets, Y. I.

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
[Crossref]

Nöhammer, B.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

Nugent, K.

Nyvlt, M.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Paganin, D.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

Paganin, D. M.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
[Crossref] [PubMed]

Paterson, D.

Pateyron-Salomé, M.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Peele, A.

Peix, G.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Peyrin, F.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Pfeiffer, F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Rack, A.

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

Reser, D. H.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

Roessl, E.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Roth-Kleiner, M.

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

Schäfer, P.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Schittny, J. C.

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

Schlenker, M.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

Scholten, R.

Schwyn, D.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Siu, K. K. W.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

Skeren, M.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Solak, H. H.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

Stampanoni, M.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synchrotron Radiat. 19(6), 1029–1037 (2012).
[Crossref] [PubMed]

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Stevendaal, U. V.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

Stevenson, A. W.

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Taylor, G. K.

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

Teague, M. R.

Tran, C.

Turner, L.

Uesugi, K.

van Stevendaal, U.

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Wang, Z.

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

Wegrzynek, D.

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

Weitkamp, T.

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Wilkins, S. W.

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Ziegler, E.

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

Appl. Phys. Lett. (2)

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002).
[Crossref]

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90(19), 193501 (2007).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

J. Appl. Cryst. (1)

G. Lovric, S. F. Barré, J. C. Schittny, M. Roth-Kleiner, M. Stampanoni, and R. Mokso, “Dose optimization approach to fast X-ray microtomography of the lung alveoli,” J. Appl. Cryst. 46(4), 856–860 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

J. Instrum. (1)

Z. Wang, C. A. Clavijo, E. Roessl, U. V. Stevendaal, T. Koehler, N. Hauser, and M. Stampanoni, “Image fusion scheme for differential phase contrast mammography,” J. Instrum. 8(07), C07011 (2013).
[Crossref]

J. Microsc. (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (2)

R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D Appl. Phys. 46(49), 494004 (2013).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[Crossref]

J. Synchrotron Radiat. (3)

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18(4), 617–629 (2011).
[Crossref] [PubMed]

C. Hintermüller, F. Marone, A. Isenegger, and M. Stampanoni, “Image processing pipeline for synchrotron-radiation-based tomographic microscopy,” J. Synchrotron Radiat. 17(4), 550–559 (2010).
[Crossref] [PubMed]

F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synchrotron Radiat. 19(6), 1029–1037 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Nature (2)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Opt. Commun. (2)

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240(1-3), 81–88 (2004).
[Crossref]

T. E. Gureyev, “Composite techniques for phase retrieval in the Fresnel region,” Opt. Commun. 220(1-3), 49–58 (2003).
[Crossref]

Opt. Express (3)

Phys. Med. Biol. (1)

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56(23), 7353–7369 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, N. Hauser, Z. Wang, and M. Stampanoni, “Image fusion algorithm for differential phase contrast imaging,” Proc. SPIE 8313, 831354 (2012).

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006).

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Other (6)

D. M. Paganin, Coherent X-ray Optics (Oxford University, New York, 2006).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1999).

W. S. Rasband, “ImageJ,” http://rsbweb.nih.gov/ij/ (2008).

R. H. Huesman and G. T. Gullberg, "RECLBL library users manual—Donner algorithms for reconstruction tomography. Lawrence Berkeley Lab., Berkeley," (1977)

B. A. Dowd, G. H. Campbell, R. B. Marr, V. V. Nagarkar, S. V. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” in (International Society for Optics and Photonics, 1999), 224–236.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2008), pp. 954–954.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic detailing the setup for high resolution in-line phase contrast tomography at TOMCAT (SLS)
Fig. 2
Fig. 2 SiC fiber composite sample a) raw phase contrast slice at 30keV, 40mm propagation, b) same slice as (a), reconstructed after phase retrieval of projections, c) magnified portion of (a), d) magnified portion of b). e) portion of a vertical cut-through of the standard reconstructed volume, f) equivalent portion after phase retrieval.
Fig. 3
Fig. 3 Modulus of the 2-D Fourier Transform: a) standard slice reconstruction b) slice after phase retrieval of projections, c) merged. A logarithmic colour-map is used for illustrative purposes. In d) the azimuthally-averaged plot of a, b and c is shown.
Fig. 4
Fig. 4 SiC fiber composite sample a) standard slice reconstruction b) slice after phase retrieval of projections, c) slice containing merged information from slices a) and b). d,e,f: zoomed in regions. g) line profiles cut from the fibers of d-f.
Fig. 5
Fig. 5 Spartina sample a) standard slice reconstruction b) slice after phase retrieval of projections, c) slice containing merged information from slices a) and b). Magnified regions inset.
Fig. 6
Fig. 6 Comparison of equivalent-region slices of the SiC fiber composite sample with a similar spatial resolution, obtained in two different ways: a) slice containing phase retrieval with 50% higher frequencies merged, and b) slice reconstructed directly after phase retrieval using a ‘tuned’ filter coefficient αδz/µ reduced by a factor of 5. c) overlay of the two profiles, where the undersmoothing of interfaces from the reduced coefficient give an undesirable curvature across each material.

Tables (4)

Tables Icon

Table 1 Approximate δ and β values of the alloy composite materials at 30keV [25].

Tables Icon

Table 2 Comparison of area contrast-to-noise values for different material pairs. The * denotes a number which is higher than expected, but can be attributable to behavior of the original algorithm when applied to multi-materials.

Tables Icon

Table 3 The resolution of SiC composite.

Tables Icon

Table 4 CNR of water-air interface and resolution of Spartina leaf sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=k 0 z δdz =kδT(x,y) ,
and for the intensity transmission,  I / I 0 =exp( 0 z μdz)=exp ( μT(x,y) ) ,
T(x,y)= 1 μ ln( F 1 { 1 (δ/ μ)z( k x 2 + k y 2 )+1 F{ I(x,y) I 0 (x,y) } } ) ,
result = B max F 1 { Wf( k r ,M)F{ A/ A max }+F{ B/ B max } } .
CNR= S ¯ 1 S ¯ 2 σ 1 2 + σ 2 2 ,

Metrics