Abstract

The low coherence of the supercontinuum (SC) generated using picosecond pump pulses is a major drawback of such SC generation scheme. In this paper, we propose to first self-similarly compress a high power picosecond pump pulse by injecting it into a nonlinearity increasing fiber. The compressed pulse is then injected into a non-zero dispersion-shifted fiber (NZ-DSF) for SC generation. The nonlinearity increasing fiber can be obtained by tapering a large mode area photonic crystal fiber. The fiber nonlinearity is varied by varying the pitch sizes of the air holes. By using the generalized nonlinear Schrödinger equation, we show that a 1 ps pump pulse with random noise can be compressed self-similarly down to a pulse width of 53.6 fs with negligible pedestal. The noise level of the compressed pulse is reduced at the same time. The 53.6 fs pulse can then be used to generate highly coherent SC in an NZ-DSF. By using the proposed scheme, the tolerance of noise level for highly coherent SC generation with picosecond pump pulses can be improved by 5 order of magnitude.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses

Huanyu Song, Bowen Liu, Wei Chen, Yuan Li, Youjian Song, Sijia Wang, Lu Chai, Chingyue Wang, and Minglie Hu
Opt. Express 26(20) 26411-26421 (2018)

Mid-infrared self-similar compression of picosecond pulse in an inversely tapered silicon ridge waveguide

Jinhui Yuan, Jian Chen, Feng Li, Chao Mei, Zhe Kang, Xianting Zhang, Yin Xu, Binbin Yan, Xinzhu Sang, Qiang Wu, Xian Zhou, Kangping Zhong, Kuiru Wang, Chongxiu Yu, Gerald Farrell, and P. K. A. Wai
Opt. Express 25(26) 33439-33450 (2017)

Limits of coherent supercontinuum generation in normal dispersion fibers

Alexander M. Heidt, James S. Feehan, Jonathan H. V. Price, and Thomas Feurer
J. Opt. Soc. Am. B 34(4) 764-775 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002).
    [Crossref]
  2. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  3. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  4. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [Crossref]
  5. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  6. A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
    [Crossref]
  7. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
    [Crossref]
  8. J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
    [Crossref] [PubMed]
  9. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
    [Crossref]
  10. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  11. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28(9), 2301–2309 (2011).
    [Crossref]
  12. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
    [Crossref]
  13. W. W. Hsiang, C. Y. Lin, M. F. Tien, and Y. Lai, “Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation,” Opt. Lett. 30(18), 2493–2495 (2005).
    [Crossref] [PubMed]
  14. L. Xu, L. F. K. Lui, P. K. A. Wai, H. Y. Tam, and C. Lu, “40 GHz actively mode-locked erbium-doped fiber ring laser using an electro-absorption modulator and a linear optical amplifier,” in OFC/NFOEC 2007, (IEEE, 2007), JThA10.
  15. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  16. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
    [Crossref] [PubMed]
  17. G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
    [Crossref]
  18. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [Crossref]
  19. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref] [PubMed]
  20. G. Genty, S. Coen, P.-A. Lacourt, B. Kibler, and J. M. Dudley, “Highly coherent supercontinuum generation in dispersion increasing fibers,” in Nonlinear Photonics 2007, (Optical Society of America, 2007), NThC2.
  21. Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
    [Crossref]
  22. J. Fekete, P. Rácz, and P. Dombi, “Femtosecond pulse compression with large-mode-area photonic crystal fibres,” in Frontiers in Optics 2011/Laser Science XXVII, (Optical Society of America, 2011), FWE5.
  23. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003).
    [Crossref] [PubMed]
  24. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18(7), 476–478 (1993).
    [Crossref] [PubMed]
  25. H. Kuehl, “Solitons on an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 5(3), 709–713 (1988).
    [Crossref]
  26. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, “Pulse compression at 1.06 microm in dispersion-decreasing holey fibers,” Opt. Lett. 31(23), 3504–3506 (2006).
    [Crossref] [PubMed]
  27. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14(9), 4026–4036 (2006).
    [Crossref] [PubMed]
  28. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15(20), 13203–13211 (2007).
    [Crossref] [PubMed]
  29. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
    [Crossref]
  30. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
    [Crossref] [PubMed]
  31. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
    [Crossref] [PubMed]
  32. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
    [Crossref]
  33. K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
    [Crossref]
  34. J. D. Moores, “Nonlinear compression of chirped solitary waves withand without phase modulation,” Opt. Lett. 21(8), 555–557 (1996).
    [Crossref] [PubMed]
  35. H. Subbaraman, T. Ling, Y. Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46(16), 3263–3268 (2007).
    [Crossref] [PubMed]
  36. F. Gérôme, S. Février, A. D. Pryamikov, J.-L. Auguste, R. Jamier, J.-M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett. 32(10), 1208–1210 (2007).
    [Crossref] [PubMed]
  37. G. Prabhakar, A. Peer, V. Rastogi, and A. Kumar, “Large-effective-area dispersion-compensating fiber design based on dual-core microstructure,” Appl. Opt. 52(19), 4505–4509 (2013).
    [Crossref] [PubMed]
  38. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
    [Crossref]
  39. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  40. Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations,” J. Lightwave Technol. 29(9), 1293–1305 (2011).
    [Crossref]

2013 (2)

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
[Crossref]

G. Prabhakar, A. Peer, V. Rastogi, and A. Kumar, “Large-effective-area dispersion-compensating fiber design based on dual-core microstructure,” Appl. Opt. 52(19), 4505–4509 (2013).
[Crossref] [PubMed]

2012 (1)

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

2011 (5)

2010 (3)

2009 (3)

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

2007 (4)

2006 (4)

M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, “Pulse compression at 1.06 microm in dispersion-decreasing holey fibers,” Opt. Lett. 31(23), 3504–3506 (2006).
[Crossref] [PubMed]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14(9), 4026–4036 (2006).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

2005 (3)

W. W. Hsiang, C. Y. Lin, M. F. Tien, and Y. Lai, “Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation,” Opt. Lett. 30(18), 2493–2495 (2005).
[Crossref] [PubMed]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
[Crossref] [PubMed]

2003 (3)

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
[Crossref] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003).
[Crossref] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2002 (3)

1998 (2)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

1997 (1)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
[Crossref]

1996 (1)

1993 (1)

1988 (1)

Ania-Castanon, J. D.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Auguste, J.-L.

Baggett, J. C.

Benko, C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Birks, T. A.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002).
[Crossref]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Blondy, J.-M.

Brunner, F.

Bubnov, M. M.

Burkhardt, A.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Cai, Y.

Cao, P.

Carruthers, T. F.

Chen, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
[Crossref] [PubMed]

Chen, M. Y.

Chen, R. T.

Chernikov, S. V.

Chu, P. L.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
[Crossref]

Cimalla, P.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Clarkson, W. A.

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Cossel, K. C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Couny, F.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Cumberland, B. A.

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Dianov, E. M.

Diddams, S. A.

Dong, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Dudley, J. M.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[Crossref]

Eggleton, B. J.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Ellingham, T. J.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Fermann, M. E.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Février, S.

Friberg, A. T.

Friebele, E. J.

Furusawa, K.

Gaertner, M.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Genty, G.

G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28(9), 2301–2309 (2011).
[Crossref]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

George, A. K.

Gérôme, F.

Hartl, I.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
[Crossref] [PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
[Crossref] [PubMed]

Hatami-Hanza, H.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
[Crossref]

He, F.

Hooper, L. E.

Horak, P.

Hsiang, W. W.

Hu, J.

Innerhofer, E.

Jamier, R.

Jiang, Y. Q.

Keller, U.

Kim, J.

Kirsten, L.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Knight, J. C.

Kobtsev, S. M.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Koch, E.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
[Crossref] [PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
[Crossref] [PubMed]

Kubota, H.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Kuehl, H.

Kukarin, S.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Kumar, A.

Kutz, J. N.

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
[Crossref]

Lai, Y.

Li, Q.

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
[Crossref]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations,” J. Lightwave Technol. 29(9), 1293–1305 (2011).
[Crossref]

Likhachev, M. E.

Lin, C. Y.

Ling, T.

Ma, D.

Man, T.-P. M.

Mangan, B. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

Marks, B. S.

Martin, M. J.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

McKay, H.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Meissner, S.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Menyuk, C. R.

Monro, T. M.

Moores, J. D.

Mosley, P. J.

Mostofi, A.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
[Crossref]

Muir, A. C.

Nakazawa, M.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Nakkeeran, K.

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations,” J. Lightwave Technol. 29(9), 1293–1305 (2011).
[Crossref]

Nilsson, J.

Ortigosa-Blanch, A.

Paschotta, R.

Payne, D. N.

Peacock, A. C.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
[Crossref] [PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
[Crossref] [PubMed]

Peer, A.

Poletti, F.

Popov, S. V.

Prabhakar, G.

Price, J. H. V.

Pryamikov, A. D.

Rastogi, V.

Richardson, D. J.

Roberts, P. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

Ruehl, A.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Rulkov, A. B.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002).
[Crossref]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Sabert, H.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

Semjonov, S. L.

Senthilnathan, K.

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations,” J. Lightwave Technol. 29(9), 1293–1305 (2011).
[Crossref]

Smirnov, S. V.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Stone, J. M.

Subbaraman, H.

Südmeyer, T.

Surakka, M.

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Taunay, T. F.

Taylor, J. R.

Thomas, B.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Tien, M. F.

Travers, J. C.

Tse, M. L. V.

Turitsyn, S. K.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

Turunen, J.

Wadsworth, W. J.

Wai, P. K. A.

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
[Crossref]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations,” J. Lightwave Technol. 29(9), 1293–1305 (2011).
[Crossref]

Walther, J.

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Wright, B. M.

Ye, J.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Zhang, Z.

Zhou, C.

Zong, W.

Anal. Bioanal. Chem. (1)

J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem. 400(9), 2721–2743 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33(4), 620–628 (1997).
[Crossref]

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (6)

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

Opt. Commun. (2)

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Pedestal free pulse compression of chirped optical solitons,” Opt. Commun. 285(6), 1449–1455 (2012).
[Crossref]

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301–302, 29–33 (2013).
[Crossref]

Opt. Express (3)

Opt. Fiber Comm. Rep. (1)

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” Opt. Fiber Comm. Rep. 2(5), 435–461 (2005).
[Crossref]

Opt. Fiber Technol. (2)

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[Crossref]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4(2), 215–223 (1998).
[Crossref]

Opt. Lett. (8)

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

W. W. Hsiang, C. Y. Lin, M. F. Tien, and Y. Lai, “Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation,” Opt. Lett. 30(18), 2493–2495 (2005).
[Crossref] [PubMed]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
[Crossref] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003).
[Crossref] [PubMed]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18(7), 476–478 (1993).
[Crossref] [PubMed]

J. D. Moores, “Nonlinear compression of chirped solitary waves withand without phase modulation,” Opt. Lett. 21(8), 555–557 (1996).
[Crossref] [PubMed]

F. Gérôme, S. Février, A. D. Pryamikov, J.-L. Auguste, R. Jamier, J.-M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett. 32(10), 1208–1210 (2007).
[Crossref] [PubMed]

M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, “Pulse compression at 1.06 microm in dispersion-decreasing holey fibers,” Opt. Lett. 31(23), 3504–3506 (2006).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84(1), 011806 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056619 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90(11), 113902 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (3)

G. Genty, S. Coen, P.-A. Lacourt, B. Kibler, and J. M. Dudley, “Highly coherent supercontinuum generation in dispersion increasing fibers,” in Nonlinear Photonics 2007, (Optical Society of America, 2007), NThC2.

L. Xu, L. F. K. Lui, P. K. A. Wai, H. Y. Tam, and C. Lu, “40 GHz actively mode-locked erbium-doped fiber ring laser using an electro-absorption modulator and a linear optical amplifier,” in OFC/NFOEC 2007, (IEEE, 2007), JThA10.

J. Fekete, P. Rácz, and P. Dombi, “Femtosecond pulse compression with large-mode-area photonic crystal fibres,” in Frontiers in Optics 2011/Laser Science XXVII, (Optical Society of America, 2011), FWE5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Cross section and (b) typical electrical field profile of the propagation mode in the designed LMA fiber with d = 0.3Λ and Λ = 20 μm.
Fig. 2
Fig. 2 (a) Effective mode area and (b) nonlinear coefficient (logarithmic scale) of the designed LMA fiber with different air hole pitch sizes.
Fig. 3
Fig. 3 (a) Dispersion curves of the LMA PCF design in Fig. 1(a) with different air hole pitch sizes and (b) the dispersion at 1550 nm versus the air hole pitch size.
Fig. 4
Fig. 4 The profiles of (a) nonlinearity γ, dispersion β2 and (b) air hole pitch size Λ versus σz in the designed LMA PCF taper.
Fig. 5
Fig. 5 Evolutions of the (a) temporal profile and (b) spectrum of the pulse in the LMA PCF taper. The output (c) temporal profile and (d) spectrum of the self-similar compressed pulse from the LMA PCF taper is plotted in blue solid curves. The ideal temporal profile and spectrum of the self-similarly compressed pulse without any high order dispersion and high order nonlinearity in the fiber are also plotted in red solid curves for comparison.
Fig. 6
Fig. 6 Comparison of the evolutions of the (a) FWHM and (b) peak power of the pulse in the LMA PCF taper (blue curves) to ideal case without high order dispersion and high order nonlinearity (red curves). The insets are the corresponding quantitative differences. The evolutions of (c) dispersion length LD (blue solid curves), nonlinear length LN (red solid curves), and chirp length LC (black dashed curves) during self-similar pulse compression.
Fig. 7
Fig. 7 (a) The input pulse (black solid curves), output pulse (blue solid curves) and output with noiseless input pulse (red dashed curves) shown in logarithmic scale. (b) The input pulse (black solid curves), and (c) output pulse (blue solid curves) and output with noiseless input pulse (red dashed curves) shown in linear scale.
Fig. 8
Fig. 8 (a) The LMA PCF taper design, (b) dispersion and (c) nonlinearity with full taper design (FTD) model (red solid curves) and simplified taper design (STD) model (blue dashed curves). The (d) output waveforms and (e) evolutions of pulse width in both the STD and FTD models simulated with the simplified propagation model (SPM) and full propagation model (FPM).
Fig. 9
Fig. 9 The evolutions of the pulse shapes and spectra of supercontinuum generated by (a) the 1 ps pulse and (b) the compressed 53.6 fs pulse. The top and bottom figures show the spectra and pulse shapes of the input and output pulses respectively. The power shown in the evolution figures in the middle are normalized to the maximum power value in each figure respectively.
Fig. 10
Fig. 10 (a), (c) The spectra and (b), (d) degree of coherence of the SC generated by 1 ps pump pulse with noise level (a), (b) η = 1 × 10−3 and (c), (d) η = 1 × 10−6. The grey plots in (a) and (c) are the overlapped spectra of 50 shots in each figure. The blue curves are the averaged spectrum of the 50 shots. The red curves in (b) and (d) are the degree of coherence of the spectra in (a) and (c) respectively.
Fig. 11
Fig. 11 (a), (c) The spectra and (b), (d) the degree of coherence of the SC generated by the compressed 53.6 fs pump pulse with noise level at (a), (b) η = 0.1 and (c), (d) η = 1 × 10−3. The gray plots in (a) and (c) are the overlapped spectra of 50 shots in each figure. The blue curves are the averaged spectrum of the 50 shots. The red curves in (b) and (d) are the degree of coherence of the spectra in (a) and (c) respectively.
Fig. 12
Fig. 12 The weighted degree of coherence (a) R and (b) K = log(1 − R) measured for the SC generated by the 1 ps pulse (red curves with stars) and the compressed 53.6 fs pulse (blue curves with circles).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A z + αA 2 k2 i k+1 k! β k (z) k A t k =iγ(z)( 1+i τ s t )×( A(z,t) R( t ) | A(z,t t ) | 2 d t ),
R(t)=(1 f R )δ(t)+ f R τ 1 ( τ 1 2 + τ 2 2 )exp(t/ τ 2 )sin(t/ τ 1 )Θ(t),
i A z β 2 (z) 2 2 A t 2 +γ(z) | A | 2 A=0.
A(t,z)= ( P 0 1ξD(z) ) 1/2 sech( t t 0 T 0 [1ξD(z)] )exp( iξ (t t 0 ) 2 2[1ξD(z)] ),
ρ(z)=ρ(0)[1ξD(z)].
ρ(z)= β 2 (z) γ(z) , D(z)= 0 z β 2 ( z ) d z .
A(t,z)= ( P 0 e σz ) 1/2 sech( (t t 0 ) e σz T 0 )exp( i 2 ξ (t t 0 ) 2 e σz ).
γ(z)= γ(0) 1σz ,
A(t,z)= ( P 0 1σz ) 1/2 sech( t t 0 T 0 (1σz) )exp( iξ (t t 0 ) 2 2(1σz) ),
T(z)= T 0 (1σz), and P(z)= P 0 1σz .
γ(Λ)= ω 0 n 2 c A eff ( ω 0 , Λ) .
a Λ 2 +bΛ+ A 0 ω 0 n 2 (1σz) cγ(0) =0.
A(t)= P 0 1/2 sech( t T 0 )[ exp( iξ t 2 2 )+η N ^ exp(i2π U ^ ) ],
γ(z)= γ(0) β 2 (0) β 2 (z) 1ξ 0 z β 2 ( z )d z .
| g 12 (1) (ω) |=| A ˜ i * (ω) A ˜ j (ω) ij | A ˜ (ω) | 2 |,
R= 0 | g 12 (1) (ω) | P ¯ (ω)dω 0 P ¯ (ω)dω ,

Metrics