Abstract

We investigated the effect of rare earth impurities on the cooling efficiency of Yb3+:LiYF4 (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel approach for solid state cryocoolers

Azzurra Volpi, Alberto Di Lieto, and Mauro Tonelli
Opt. Express 23(7) 8216-8226 (2015)

Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses

Bo Zhou, Hai Lin, Baojie Chen, and Edwin Yue-Bun Pun
Opt. Express 19(7) 6514-6523 (2011)

Nanoparticle doping for high power fiber lasers at eye-safer wavelengths

Colin C. Baker, E. Joseph Friebele, Ashley A. Burdett, Daniel L. Rhonehouse, Jake Fontana, Woohong Kim, Steven R. Bowman, L. Brandon Shaw, Jasbinder Sanghera, Jun Zhang, Radha Pattnaik, Mark Dubinskii, John Ballato, Courtney Kucera, Amber Vargas, Alexander Hemming, Nikita Simakov, and John Haub
Opt. Express 25(12) 13903-13915 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [Crossref]
  2. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1–2), 67–84 (2008).
    [Crossref]
  3. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
    [Crossref]
  4. M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
    [Crossref]
  5. S. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
    [Crossref] [PubMed]
  6. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
    [Crossref] [PubMed]
  7. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [Crossref]
  8. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
    [Crossref]
  9. G. Nemova and R. Kashyap, “Laser cooling in Yb3+:YAG,” J. Opt. Soc. Am. B 31(2), 340–348 (2014).
    [Crossref]
  10. A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
    [Crossref]
  11. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
    [Crossref]
  12. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
    [Crossref] [PubMed]
  13. M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
    [Crossref]
  14. J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer, 1976).

2014 (3)

2013 (1)

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

2011 (2)

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

2010 (2)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[Crossref]

2008 (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1–2), 67–84 (2008).
[Crossref]

2007 (1)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

2003 (1)

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

1995 (1)

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Asmerom, Y.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Bottazzi, P.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

Buchwald, M.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Di Lieto, A.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Edwards, B.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Epstein, R. I.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1–2), 67–84 (2008).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Gosnell, T.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Hehlen, M. P.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Kashyap, R.

G. Nemova and R. Kashyap, “Laser cooling in Yb3+:YAG,” J. Opt. Soc. Am. B 31(2), 340–348 (2014).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[Crossref]

Melgaard, S.

Melgaard, S. D.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Mungan, C.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling in Yb3+:YAG,” J. Opt. Soc. Am. B 31(2), 340–348 (2014).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[Crossref]

Palenzona, M.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

Patterson, W. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

Polyak, V.

Seletskiy, D.

Seletskiy, D. V.

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Sheik-Bahae, M.

S. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref] [PubMed]

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1–2), 67–84 (2008).
[Crossref]

Sottile, A.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

Stark, P. C.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

Tiepolo, M.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

Tonelli, M.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Vannucci, R.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

Volpi, A.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

Yoshida, T. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

Zhang, Z.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

Can. Mineral. (1)

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41(2), 259–272 (2003).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[Crossref]

J. Mater. Chem. C (1)

M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, “Materials for optical cryocoolers,” J. Mater. Chem. C 1(45), 7471–7478 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1–2), 67–84 (2008).
[Crossref]

Nat. Photon. (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4(3), 161–164 (2010).
[Crossref]

Nature (1)

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Proc. SPIE (1)

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, 900003 (2014).
[Crossref]

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[Crossref]

Other (1)

J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cooling efficiency data points and corresponding fits, as functions of the incoming wavelength, for samples A and B.
Fig. 2
Fig. 2 Spectra of the green fluorescence collected from the Yb:YLF samples.
Fig. 3
Fig. 3 Left: Spectrum of the fluorescence in the green region from sample B, superimposed with a balanced sum of fluorescence spectra from the Erbium- and Holmium-doped test samples. Right: Fluorescence spectra from Erbium- and Holmium-doped test samples (in arbitrary units).
Fig. 4
Fig. 4 Spectra of the NIR fluorescence collected from the cooling samples.
Fig. 5
Fig. 5 NIR spectra from test samples, from left to right: Holmium, Thulium and Erbium fluorescence.
Fig. 6
Fig. 6 Direct energy transitions between elements detected in the samples. Laser pump is shown in cyan. Direct transfers from Ytterbium are shown in orange. Dotted lines represent the non-radiative de-excitation of the donor and solid lines represent transitions due to acquired excitations in the acceptor. Radiative emissions are depicted in green or red, according to their color, with the approximate wavelength in nm. Internal non-radiative decays are shown in purple.
Fig. 7
Fig. 7 Qualitative model of the energy transfer mechanisms inside the cooling samples. Transfers from Erbium are shown in blue. All the other colors are detailed in the caption of Fig. 6.

Tables (2)

Tables Icon

Table 1 Concentration of impurities in the Yb:YLF cooling samples

Tables Icon

Table 2 Ratios of impurities concentrations from LA-ICP-MS analysis and fluorescence peaks in green and NIR regions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η c ( λ , T ) = P c o o l P a b s =   η e x t [ 1 1 + α b / α r ( λ , T ) ] λ λ f ( T ) 1

Metrics