Abstract

Cavity ring down (CRD) technique was employed to measure optical losses (absorption and scattering losses), residual reflectance and transmittance of anti-reflectively (AR) coated laser components with transmittance higher than 99.9%. By inserting the AR coated laser component with parallel optical surfaces into the ring-down cavity and measuring the ring-down time versus the angle of incidence with respect to the surface normal, the optical loss and residual reflectance of the laser component were determined respectively at normal and out-of-normal incidences with repeatability of part-per-million level. The transmittance was also determined simultaneously. Experimental results demonstrated that CRD is a simple, inexpensive and fast technique for highly accurate measurements of optical loss, residual reflectance, and transmittance of AR coated laser components widely used in high-power laser systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique

Hao Cui, Bincheng Li, Shilei Xiao, Yanling Han, Jing Wang, Chunming Gao, and Yafei Wang
Opt. Express 25(5) 5807-5820 (2017)

Combined cavity ring-down and spectrophotometry for measuring reflectance of optical laser components

Hongyu Zu, Bincheng Li, Yanling Han, and Lifeng Gao
Opt. Express 21(22) 26735-26741 (2013)

Loss determination in microsphere resonators by phase-shift cavity ring-down measurements

J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H.-P. Loock, Z. Tian, M.W.B. Wilson, S. Yam, and O. Yastrubshak
Opt. Express 16(17) 13158-13167 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Schmidl, W. Paa, W. Triebel, S. Schippel, and H. Heyer, “Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source,” Appl. Opt. 48(35), 6754–6759 (2009).
    [Crossref] [PubMed]
  2. H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultralow-loss mirror of the parts-in-106 level at 1064 nm,” Opt. Lett. 20(6), 530–532 (1995).
  3. Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
    [Crossref]
  4. A. Duparré and D. Ristau, “Optical interference coatings 2010 measurement problem,” Appl. Opt. 50(9), C172–C177 (2011).
    [Crossref] [PubMed]
  5. C. Stambaugh, M. Durand, U. Kemiktarak, and J. Lawall, “Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction,” Appl. Opt. 53(22), 4930–4938 (2014).
    [Crossref] [PubMed]
  6. G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41(24), 5167–5171 (2002).
    [Crossref] [PubMed]
  7. R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 5(6), 1279–1283 (2003).
    [Crossref]
  8. J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
    [Crossref] [PubMed]
  9. A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ring-down spectroscopy applied to solids: properties of a Fabry–Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22(3), 675–686 (2005).
    [Crossref]
  10. A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
    [Crossref]
  11. K. Egashira, A. Terasaki, and T. Kondow, “Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave,” Appl. Opt. 49(7), 1151–1157 (2010).
    [Crossref] [PubMed]
  12. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
    [Crossref]
  13. S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40(9), 1570–1573 (2001).
    [Crossref] [PubMed]
  14. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
    [Crossref]
  15. G. R. Lin, C. L. Pan, and K. C. Yu, “Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier,” Opt. Express 15(20), 13330–13339 (2007).
    [Crossref] [PubMed]
  16. P. Manimaran and M. G. Madhan, “An efficient electrode arrangement for TWSOA based inline detector,” Optik (Stuttg.) 124(19), 3842–3847 (2013).
    [Crossref]
  17. Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
    [Crossref]
  18. H. F. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15(14), 8745–8759 (2007).
    [Crossref] [PubMed]
  19. K. K. Lehmann and D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
    [Crossref]

2014 (1)

2013 (1)

P. Manimaran and M. G. Madhan, “An efficient electrode arrangement for TWSOA based inline detector,” Optik (Stuttg.) 124(19), 3842–3847 (2013).
[Crossref]

2011 (2)

Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
[Crossref]

A. Duparré and D. Ristau, “Optical interference coatings 2010 measurement problem,” Appl. Opt. 50(9), C172–C177 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
[Crossref]

2007 (2)

2005 (2)

A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ring-down spectroscopy applied to solids: properties of a Fabry–Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22(3), 675–686 (2005).
[Crossref]

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

2004 (1)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

2003 (1)

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 5(6), 1279–1283 (2003).
[Crossref]

2002 (2)

A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
[Crossref]

G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41(24), 5167–5171 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (1)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

1996 (1)

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[Crossref]

1995 (1)

Aarts, I. M. P.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

Alexander, A. J.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 5(6), 1279–1283 (2003).
[Crossref]

Antonietti, J.-M.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Duparré, A.

Durand, M.

Egashira, K.

Engeln, R.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

Gong, Y.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
[Crossref]

Han, Y.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
[Crossref]

Han, Y. L.

Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
[Crossref]

Heiz, U.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Heyer, H.

Hoex, B.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

Huang, H. F.

Jones, H.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Kataoka, I.

Kemiktarak, U.

Kessels, W. M. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

Kitajima, N.

Kondow, T.

Lawall, J.

Lehmann, K. K.

H. F. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15(14), 8745–8759 (2007).
[Crossref] [PubMed]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[Crossref]

Li, B.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
[Crossref]

Li, B. C.

Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
[Crossref]

Lim, K. H.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Lin, G. R.

Logunov, S. L.

Madhan, M. G.

P. Manimaran and M. G. Madhan, “An efficient electrode arrangement for TWSOA based inline detector,” Optik (Stuttg.) 124(19), 3842–3847 (2013).
[Crossref]

Manimaran, P.

P. Manimaran and M. G. Madhan, “An efficient electrode arrangement for TWSOA based inline detector,” Optik (Stuttg.) 124(19), 3842–3847 (2013).
[Crossref]

Marcus, G. A.

Meijer, G.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

Michalski, M.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Mitake, T.

Muir, R. N.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 5(6), 1279–1283 (2003).
[Crossref]

Nakamura, K.

Paa, W.

Pacchioni, G.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Pan, C. L.

Qu, Z. C.

Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
[Crossref]

Ristau, D.

Romanini, D.

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[Crossref]

Rösch, N.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Sanden, M. C. M.

A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
[Crossref]

Schippel, S.

Schmidl, G.

Schwettman, H. A.

Sekiguchi, H.

Smets, A. H. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
[Crossref]

Stambaugh, C.

Terasaki, A.

Triebel, W.

van de Sanden, M. C. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

van Helden, J. H.

A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
[Crossref]

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

Vitto, A. D.

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

Yu, K. C.

Appl. Opt. (6)

Appl. Phys. B (1)

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B 93(2-3), 355–360 (2008).
[Crossref]

Appl. Phys. Lett. (1)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84(16), 3079–3081 (2004).
[Crossref]

J. Chem. Phys. (2)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110(5), 2732–2733 (1999).
[Crossref]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[Crossref]

J. Non-Cryst. Solids (1)

A. H. M. Smets, J. H. van Helden, and M. C. M. Sanden, “Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique,” J. Non-Cryst. Solids 299(302), 610–614 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Optik (Stuttg.) (1)

P. Manimaran and M. G. Madhan, “An efficient electrode arrangement for TWSOA based inline detector,” Optik (Stuttg.) 124(19), 3842–3847 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 5(6), 1279–1283 (2003).
[Crossref]

Phys. Rev. Lett. (1)

J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. D. Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94(21), 213402 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. C. Qu, B. C. Li, and Y. L. Han, “Measurement of losses in optical components using filtered optical feedback cavity ring down technique,” Proc. SPIE 8206, 82061M (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the CRD experimental setup. BS: beamsplitter; PD: photo detector; R1, R2, R3: cavity mirrors; PC: personal computer.
Fig. 2
Fig. 2 Theoretical and measured transmittance spectrum of the AR-coated sample in 900nm-1300nm spectral range.
Fig. 3
Fig. 3 (a) A typical ring-down signal and the corresponding single exponential fit in a linear scale or in a logarithmic scale. (b) The fitting error representing the difference between the experimental data and the fit.
Fig. 4
Fig. 4 (a) Experimental total loss versus the angle of incidence for different RDC lengths. The sample is placed in the middle of the RDC. Error bar represents the standard deviation of 128 measurements. (b) Optical loss, residual reflectance, and transmittance versus RDC length.
Fig. 5
Fig. 5 Ring-down time versus RDC length for initial RDC (with no sample) (τ0), RDC with sample with normal incidence (τ2), and RDC with sample with out-of-normal incidence (τ1).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I n = I 0 ( R 1 R 2 R 3 2 ) n exp ( 2 n k )
I ( t ) = I 0 ( R 1 R 2 R 3 2 ) t c 2 [ L + ( n s 1 ) d ] exp ( t c L + ( n s 1 ) d k ) = I 0 exp [ c L + ( n s 1 ) d ( ln R 1 R 2 R 3 k ) t ]
τ 1 = L + ( n s 1 ) d c ( k ln R 1 R 2 R 3 )
τ 0 = L c ( ln R 1 R 2 R 3 )
k = L c ( 1 τ 1 1 τ 0 ) + ( n s 1 ) d c τ 1
k + r = L c ( 1 τ 1 1 τ 0 ) + ( n s 1 ) d c τ 1
I n = I 0 ( R 1 R 2 R 3 2 ) n exp ( 2 n k )
I ( t ) = I 0 ( R 1 R 2 R 3 2 ) t c 2 [ L + ( n s 1 ) d ] exp ( t c L + ( n s 1 ) d k ) = I 0 exp [ c L + ( n s 1 ) d ( ln R 1 R 2 R 3 k ) t ]
τ 2 = L + ( n s 1 ) d c ( k ln R 1 R 2 R 3 )
k = L c ( 1 τ 2 1 τ 0 ) + ( n s 1 ) d c τ 2
r = L + ( n s 1 ) d c ( 1 τ 1 1 τ 2 )
T = 1 k r

Metrics