Abstract

A widely tunable single bandpass microwave photonic filter (MPF) based on Brillouin-assisted optical carrier recovery in a highly nonlinear fiber (HNLF) with only one optical filter is proposed and experimentally demonstrated. The fundamental principle lies in the fact that the suppressed optical carrier of the phase modulated optical signal could be recovered by the stimulated Brillouin scattering (SBS) amplification effect. When phase modulated optical signals go through an optical filter with a bandpass response, the optical carrier and the upper sidebands suffer from the suppression of the optical filter because they fall in the stopband of that. In our system, the optical carrier could be recovered by the SBS operation around 38 dB. The MPF is achieved by one-to-one mapping from the optical domain to the electrical domain only when one of phase modulated sidebands lies in the bandpass of the optical filter. It shows an excellent selectivity with a 3-dB bandwidth of 170 MHz over a tuning frequency range of 9.5-32.5 GHz. The out-of-band suppression of the MPF is more than 20 dB. Moreover, the MPF shows an excellent shape factor with 10-dB bandwidth of only 520 MHz. The frequency response of the MPF could be widely tuned by changing the frequency difference between the frequency of the optical carrier and the center frequency of the bandpass of the optical filter. A proof-of-concept experiment is carried out to verify the proposed approach.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable dual-passband microwave photonic filter with a fixed frequency interval using phase-to-intensity modulation conversion by stimulated Brillouin scattering

Zhengkai Li, Zhiyao Zhang, Zhen Zeng, Jun Yuan, Shangjian Zhang, Yali Zhang, Zhengping Zhang, and Yong Liu
Appl. Opt. 58(8) 1961-1965 (2019)

Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity

Fan Jiang, Yuan Yu, Haitao Tang, Lu Xu, and Xinliang Zhang
Opt. Express 24(16) 18655-18663 (2016)

Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering

Adam Byrnes, Ravi Pant, Enbang Li, Duk-Yong Choi, Christopher G. Poulton, Shanhui Fan, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 20(17) 18836-18845 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  2. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
    [Crossref] [PubMed]
  3. A. Mokhtari, S. Preubler, K. Jamshidi, M. Akbari, and T. Schneider, “Fully-tunable microwave photonic filter with complex coefficients using tunable delay lines based on frequency-time conversions,” Opt. Express 20(20), 22728–22734 (2012).
    [Crossref] [PubMed]
  4. Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photon. Technol. Lett. 20(2), 78–80 (2008).
    [Crossref]
  5. F. Zeng and J. P. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express 12(16), 3814–3819 (2004).
    [Crossref] [PubMed]
  6. H. Chi, X. H. Zou, and J. P. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation coversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
    [Crossref]
  7. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  8. H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
    [Crossref]
  9. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008).
    [Crossref]
  10. D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11(7), 874–876 (1999).
    [Crossref]
  11. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  12. W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on Stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  13. R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
    [Crossref]
  14. T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
    [Crossref] [PubMed]
  15. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express 19(19), 18423–18429 (2011).
    [Crossref] [PubMed]
  16. T. Chen, X. K. Yi, L. W. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
    [Crossref] [PubMed]
  17. W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  18. A. B. Matsko, W. Liang, A. Savchenkov, V. Ilchenko, D. Seidel, and L. Maleki, “Multi-octave tunable agile RF photonic filters,” IEEE Int. Top. Meet. MWP, Pasadena, CA, USA, 6–9 (2012).
    [Crossref]
  19. Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).
  20. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
    [Crossref]
  21. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
    [Crossref] [PubMed]
  22. W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
    [Crossref]
  23. Z. Z. Tang and S. L. Pan, “A high-resolution optical vector network analyzer with the capability of measuring bandpass devices,” IEEE Int. Top. Meet. MWP, Alexandria, VA, USA, 225–228 (2013).
    [Crossref]
  24. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
    [Crossref]

2014 (2)

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

2013 (1)

2012 (4)

A. Mokhtari, S. Preubler, K. Jamshidi, M. Akbari, and T. Schneider, “Fully-tunable microwave photonic filter with complex coefficients using tunable delay lines based on frequency-time conversions,” Opt. Express 20(20), 22728–22734 (2012).
[Crossref] [PubMed]

T. Chen, X. K. Yi, L. W. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
[Crossref] [PubMed]

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

2011 (4)

2010 (3)

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008).
[Crossref]

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photon. Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

2006 (2)

2004 (1)

2001 (1)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

1999 (1)

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11(7), 874–876 (1999).
[Crossref]

Akbari, M.

Andres, M. V.

Bolea, M.

Cao, Y.

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Capmany, J.

Chang, Y. M.

Chen, T.

Chi, H.

Cruz, J. L.

Deng, Y.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

Diez, A.

Feng, X. H.

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Fu, H. Y.

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Galan, J. V.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Guan, B. O.

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

He, S. L.

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Huang, N. B.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

Huang, T. X. H.

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11(7), 874–876 (1999).
[Crossref]

Izutsu, M.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Jamshidi, K.

Kawanishi, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Lee, J. H.

Li, L. W.

Li, M.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

Li, W. Z.

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, Z. H.

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Loayssa, A.

Marti, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Minasian, R.

Minasian, R. A.

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on Stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
[Crossref] [PubMed]

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11(7), 874–876 (1999).
[Crossref]

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Mokhtari, A.

Mora, J.

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Ortega, B.

Ou, H. Y.

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Palaci, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pastor, D.

Preubler, S.

Sagues, M.

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Schneider, T.

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Tao, R. C.

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Vidal, B.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Wang, L. X.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

Wang, Q.

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photon. Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

Wang, W. T.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

Xue, X. X.

Yao, J. P.

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

H. Chi, X. H. Zou, and J. P. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation coversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
[Crossref]

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photon. Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

F. Zeng and J. P. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express 12(16), 3814–3819 (2004).
[Crossref] [PubMed]

Yi, X.

Yi, X. K.

Zeng, F.

Zhang, H. Y.

Zhang, W. W.

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on Stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zheng, X. P.

Zhou, B. K.

Zhu, K.

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Zhu, N. H.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

Zou, X. H.

IEEE Photon. J. (2)

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photon. J. 6(4), 5500908 (2014).

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 7901108 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (6)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNnO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photon. Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11(7), 874–876 (1999).
[Crossref]

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on Stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (6)

Opt. Laser Technol. (1)

H. Y. Fu, K. Zhu, H. Y. Ou, and S. L. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Opt. Lett. (1)

Other (2)

A. B. Matsko, W. Liang, A. Savchenkov, V. Ilchenko, D. Seidel, and L. Maleki, “Multi-octave tunable agile RF photonic filters,” IEEE Int. Top. Meet. MWP, Pasadena, CA, USA, 6–9 (2012).
[Crossref]

Z. Z. Tang and S. L. Pan, “A high-resolution optical vector network analyzer with the capability of measuring bandpass devices,” IEEE Int. Top. Meet. MWP, Alexandria, VA, USA, 225–228 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed single bandpass MPF (LD: laser diode; PM: phase modulator; ISO: isolator; PC: polarization controller; PD: photodetector; OBPF: optical bandpass filter; EA: electrical amplifier; F-S: frequency shifter; EDFA: erbium-doped fiber amplifier; OC: optical circulator; HNLF: highly nonlinear fiber; PolM: polarization modulator; pol: polarizer; MS: microwave source; EVNA: electrical vector network analyzer).
Fig. 2
Fig. 2 Illustration of the proposed single bandpass MPF. (a) Transmission spectrum of the optical filter in the optical domain, (b) corresponding frequency response of the MPF in the electrical domain.
Fig. 3
Fig. 3 Measured optical spectra of (a) the frequency shifted optical signal at the output of the F-S, (b) the optical carrier before and after amplified by the SBS gain.
Fig. 4
Fig. 4 (a) Measured optical spectra of optical single sideband modulated optical signals as well as the filter response of the F-P filter in blue lines, (b) measured frequency response of the single bandpass MPF with a center frequency of 12 GHz.
Fig. 5
Fig. 5 Measured frequency responses of the widely tunable single bandpass MPF.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E PM (t)= a 1 expj( ω c ω e )t+ a 0 expj ω c t+ a +1 expj( ω c + ω e )t
E PM (ω)=2π a 1 δ[ ω( ω c ω e ) ]+2π a 0 δ( ω ω c )
E filter (ω)= E PM ( ω )H( ω ) =2π{ a 1 H( ω c ω e )δ[ ω( ω c ω e ) ]+ a 0 βH( ω c )δ( ω ω c ) }
E FS (t)= a +1 expj( ω c + ω SBS )t
i( ω e ) a 0 a 1 βGH( ω c ω e ) H ( ω c )
H( ω c ω e ) i( ω e ) a 0 a 1 βG H ( ω c )

Metrics