Abstract

We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering pulse-induced temporal contrast degradation in chirped-pulse amplification lasers

Zhaoyang Li, Shigeki Tokita, Satoshi Matsuo, Keiichi Sueda, Takashi Kurita, Toshiyuki Kawasima, and Noriaki Miyanaga
Opt. Express 25(18) 21201-21215 (2017)

Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm

Hartmut Liebetrau, Marco Hornung, Andreas Seidel, Marco Hellwing, Alexander Kessler, Sebastian Keppler, Frank Schorcht, Joachim Hein, and Malte C. Kaluza
Opt. Express 22(20) 24776-24786 (2014)

High-spatiotemporal-quality petawatt-class laser system

Hiromitsu Kiriyama, Mori Michiaki, Yoshiki Nakai, Takuya Shimomura, Hajime Sasao, Momoko Tanaka, Yoshihiro Ochi, Manabu Tanoue, Hajime Okada, Shuji Kondo, Shuhei Kanazawa, Akito Sagisaka, Izuru Daito, Daisuke Wakai, Fumitaka Sasao, Masayuki Suzuki, Hideyuki Kotakai, Kiminori Kondo, Akira Sugiyama, Sergei Bulanov, Paul R. Bolton, Hiroyuki Daido, Shunichi Kawanishi, John L. Collier, Cristina Hernandez-Gomez, Chris J. Hooker, Klaus Ertel, Toyoaki Kimura, and Toshiki Tajima
Appl. Opt. 49(11) 2105-2115 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  2. S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29(24), 2837–2839 (2004).
    [Crossref] [PubMed]
  3. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [Crossref]
  4. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy Titanium sapphire amplifier,” Opt. Express 16(11), 8039–8049 (2008).
    [Crossref] [PubMed]
  5. S. Laux, F. Lureau, C. Radier, O. Chalus, F. Caradec, O. Casagrande, E. Pourtal, C. Simon-Boisson, F. Soyer, and P. Lebarny, “Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers,” Opt. Lett. 37(11), 1913–1915 (2012).
    [Crossref] [PubMed]
  6. Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36(16), 3194–3196 (2011).
    [Crossref] [PubMed]
  7. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:Sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
    [Crossref] [PubMed]
  8. D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8(5), 1774–1785 (2001).
    [Crossref]
  9. A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
    [Crossref]
  10. B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).
  11. D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
    [Crossref]
  12. S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
    [Crossref]
  13. L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).
  14. D. Kaganovich, J. R. Peñano, M. H. Helle, D. F. Gordon, B. Hafizi, and A. Ting, “Origin and control of the subpicosecond pedestal in femtosecond laser systems,” Opt. Lett. 38(18), 3635–3638 (2013).
    [Crossref] [PubMed]
  15. C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, and P. P. Rajeev, “Improving coherent contrast of petawatt laser pulses,” Opt. Express 19(3), 2193–2203 (2011).
    [Crossref] [PubMed]
  16. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Yu. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008).
    [Crossref] [PubMed]
  17. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
    [Crossref] [PubMed]
  18. C. Dorrer and J. Bromage, “Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses,” Opt. Express 16(5), 3058–3068 (2008).
    [Crossref] [PubMed]
  19. http://www.ibsenphotonics.com/wp-content/uploads/White-paper-Fused-Silica-Transmission-Gratings-v1.0.pdf
  20. I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).
  21. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6-p~m region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
    [Crossref]
  22. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21(6), 414–416 (1996).
    [Crossref] [PubMed]
  23. M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
    [Crossref]

2013 (3)

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

D. Kaganovich, J. R. Peñano, M. H. Helle, D. F. Gordon, B. Hafizi, and A. Ting, “Origin and control of the subpicosecond pedestal in femtosecond laser systems,” Opt. Lett. 38(18), 3635–3638 (2013).
[Crossref] [PubMed]

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

2012 (1)

2011 (2)

2010 (1)

2009 (1)

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
[Crossref]

2008 (3)

2006 (3)

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

2001 (1)

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8(5), 1774–1785 (2001).
[Crossref]

2000 (1)

I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).

1996 (1)

1987 (1)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6-p~m region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Albert, O.

Andreev, A.

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
[Crossref]

Augé-Rochereau, F.

Bahk, S. W.

Benedetti, C.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Bromage, J.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Burgy, F.

Caradec, F.

Casagrande, O.

Cecchetti, C. A.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Chalus, O.

Chambaret, J. P.

Chambaret, J.-P.

Chekhlov, O.

Cheriaux, G.

Chériaux, G.

Chvykov, V.

Collier, J.

Collier, J. L.

Cousens, S.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Didenko, N. V.

Dimauro, L. F.

Divall, E.

C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, and P. P. Rajeev, “Improving coherent contrast of petawatt laser pulses,” Opt. Express 19(3), 2193–2203 (2011).
[Crossref] [PubMed]

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Dorrer, C.

Dromey, B.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Dzelzainis, T.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Ertel, K.

Etchepare, J.

Fernandez, J. C.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Foster, P.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Gamucci, A.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Gatti, G.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Gautier, D. C.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Giulietti, A.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Giulietti, D.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Gizzi, L. A.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Gordon, D. F.

Hafizi, B.

Hamoniaux, G.

Hawkes, S.

Hawkes, S. J.

Hegelich, B. M

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Helle, M. H.

Hooker, C.

Jeong, T. M.

Jullien, A.

Jung, D.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Kaganovich, D.

Kalashnikov, M.

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
[Crossref]

Kalintchenko, G.

Kaluza, M. C.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Kamperidis, C.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Kiefer, D.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Koester, P.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Koga, J.

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

Konyashchenko, A. V.

Krushelnick, K.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Labate, L.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Lancaster, K. L.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Langley, A. J.

I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).

Laux, S.

Lebarny, P.

Lee, J.

Lee, S. K.

Levato, T.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Lewis, C. L. S.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Lindau, F.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Liu, C.

Lundh, O.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Lureau, F.

Lutsenko, A. P.

Maksimchuk, A.

Mangles, S. P. D.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Martinez, O. E.

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6-p~m region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[Crossref]

McKenna, P.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Minkovski, N.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Mourou, G. A.

Murphy, C. D.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Najmudin, Z.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Neely, D.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Palaniyppan, S.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Parry, B.

Parry, B. T.

Pathak, N.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Peñano, J. R.

Persson, A.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Piastra, F.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Pirro, G. D.

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Planchon, T. A.

Pourtal, E.

Radier, C.

Rajeev, P. P.

Robinson, A.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Ross, I. N.

I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).

Rousseau, J.-P.

Rousseau, P.

Rykovanov, S.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Salin, F.

Saltiel, S. M.

Sasaki, A.

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

Schönnagel, H.

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
[Crossref]

Schreiber, J.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Shah, R.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Shen, Z.

Simon-Boisson, C.

Soyer, F.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Sung, J. H.

Taday, P.

I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Tang, Y.

Teng, H.

Tenyakov, S. Yu.

Thomas, A. G. R.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Ting, A.

Uesaka, M.

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

Umstadter, D.

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8(5), 1774–1785 (2001).
[Crossref]

Wahlstrom, C.-G.

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Wahlström, C.-G.

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Walker, B.

Wang, Z.

Wei, Z.

Yanovsky, V.

Yeung, M.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Yu, T. J.

Zepf, M.

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Zhang, Q.

Zhidkov, A.

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

Appl. Phys. Lett. (1)

D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, “Enhanced proton beams from ultrathin targets driven by high contrast laser pulses,” Appl. Phys. Lett. 89(2), 021502 (2006).
[Crossref]

Appl. Scie. (1)

L. A. Gizzi, C. Benedetti, C. A. Cecchetti, G. D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, and F. Piastra, “Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers,” Appl. Scie. 3(3), 559–580 (2013).

Central Laser Facility Annual Report (1)

I. N. Ross, A. J. Langley, and P. Taday, “A Simple Achromatic Pulse Stretcher,” Central Laser Facility Annual Report 1999/2000, 201–203 (2000).

IEEE J. Quantum Electron. (1)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6-p~m region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[Crossref]

New J. Phys. (1)

B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36(16), 3194–3196 (2011).
[Crossref] [PubMed]

S. Laux, F. Lureau, C. Radier, O. Chalus, F. Caradec, O. Casagrande, E. Pourtal, C. Simon-Boisson, F. Soyer, and P. Lebarny, “Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers,” Opt. Lett. 37(11), 1913–1915 (2012).
[Crossref] [PubMed]

D. Kaganovich, J. R. Peñano, M. H. Helle, D. F. Gordon, B. Hafizi, and A. Ting, “Origin and control of the subpicosecond pedestal in femtosecond laser systems,” Opt. Lett. 38(18), 3635–3638 (2013).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:Sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21(6), 414–416 (1996).
[Crossref] [PubMed]

S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29(24), 2837–2839 (2004).
[Crossref] [PubMed]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[Crossref] [PubMed]

Phys. Plasmas (1)

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8(5), 1774–1785 (2001).
[Crossref]

Phys. Rev. Lett. (1)

A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultra-intense Laser Pulses with an Overdense Plasma,” Phys. Rev. Lett. 88(18), 185002 (2002).
[Crossref]

Plasma Phys. Contr. Fusion (1)

S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, Z. Najmudin, C.-G. Wahlstrom, C. D. Murphy, C. Kamperidis, K. L. Lancaster, E. Divall, and K. Krushelnick, “Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments,” Plasma Phys. Contr. Fusion 48(12B), B83–B90 (2006).
[Crossref]

Proc. SPIE (1)

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limits of the temporal contrast for CPA lasers with beams of high aperture,” Proc. SPIE 7501, 750104 (2009).
[Crossref]

Rev. Mod. Phys. (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Other (1)

http://www.ibsenphotonics.com/wp-content/uploads/White-paper-Fused-Silica-Transmission-Gratings-v1.0.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Typical temporal profiles of Astra-Gemini laser pulses.
Fig. 2
Fig. 2 Schematic of a) transmission grating stretcher and gold grating compressor set-up, G1 and G2: transmission gratings; CM: curved mirror; BM: back mirror; and FI: Faraday Isolator; b) gold grating stretcher.
Fig. 3
Fig. 3 Calculated spectral phase in the presence of grating line density mismatch.
Fig. 4
Fig. 4 a) Retrieved pulse and phase, b) FROG trace of the compressed pulse and c) the spectrum.
Fig. 5
Fig. 5 The contrast measurement of transmission grating stretcher (red) and gold grating stretcher (blue).
Fig. 6
Fig. 6 Measured grating surface profiles: (a) gold grating and (b) typical phase noise at the central line; (c) transmission grating and (d) typical phase noise at the central line.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ φ g ( ω )= 4π λ Z( ω ) ,
δ φ t ( ω )= 2π( n1 ) λ Z( ω ) ,
sinθ+sinγ=Nλ ,
ΔθcosθNΔλ .
δx L 0 Δθ cosγ  L 0 N cosθcosγ 1 τ λ 2 c ,
δx L 0 N 1 ( N λ 0 2 ) 2 1 τ λ 0 2 c .

Metrics