Abstract

Cyanine dye J-aggregate films are a class of absorbing and luminescent materials which have been extensively applied in the polariton-based research. Here we systematically study the DEDOC cyanine dyes J-aggregate films made by layer-by-layer assembly and spin-coating processes to establish a clear correlation between the film structure and the absorption and luminescence properties. From detailed analyses of morphology, optical spectra, and light-emitting diode characteristics, we demonstrate that layer-by-layer assembled film has higher degrees of homogeneity and molecular packing quality than spin-coated film, leading to a higher absorption coefficient, more uniform luminescence, and a greater electroluminescence quantum efficiency with maximized thickness.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev
Opt. Express 26(23) 30324-30337 (2018)

Layer-by-layer self-assembly of plexcitonic nanoparticles

Brendan G. DeLacy, Wenjun Qiu, Marin Soljačić, Chia Wei Hsu, Owen D. Miller, Steven G. Johnson, and John D. Joannopoulos
Opt. Express 21(16) 19103-19112 (2013)

Optical reflection response of dye-aggregate films in the absorption bands

Takashi Wakamatsu, Susumu Toyoshima, and Kazuhiro Saito
J. Opt. Soc. Am. B 23(9) 1859-1866 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Jelly, “Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride,” Nature 139(3519), 631–632 (1937).
    [Crossref]
  2. G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angew. Chem. 49, 563 (1936).
  3. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
    [Crossref]
  4. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
    [Crossref]
  5. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
    [Crossref] [PubMed]
  6. N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
    [Crossref]
  7. S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
    [Crossref]
  8. Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
    [Crossref]
  9. M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
    [Crossref]
  10. J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
    [Crossref] [PubMed]
  11. M. S. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B 82(3), 033305 (2010).
    [Crossref]
  12. G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, “Lasing through a strongly-coupled mode by intra-cavity pumping,” Opt. Express 21(10), 12122–12128 (2013).
    [Crossref] [PubMed]
  13. N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
    [Crossref]
  14. H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, C.-C. Lee, and J.-F. Chang, “Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities,” Opt. Express 21(18), 21365–21373 (2013).
    [Crossref] [PubMed]
  15. R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B 70(19), 195432 (2004).
    [Crossref]
  16. F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Annu. Rev. Phys. Chem. 65(1), 477–500 (2014).
    [Crossref] [PubMed]
  17. F. C. Spano and H. Yamagata, “Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
    [Crossref] [PubMed]
  18. D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
    [Crossref]
  19. J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
    [Crossref]
  20. I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
    [Crossref]
  21. J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
    [Crossref]
  22. J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
    [Crossref]

2014 (2)

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Annu. Rev. Phys. Chem. 65(1), 477–500 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

2011 (3)

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

F. C. Spano and H. Yamagata, “Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

2010 (2)

M. S. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B 82(3), 033305 (2010).
[Crossref]

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

2007 (1)

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

2005 (2)

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
[Crossref]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

2004 (1)

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B 70(19), 195432 (2004).
[Crossref]

2001 (1)

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

1999 (1)

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

1998 (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

1997 (1)

J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
[Crossref]

1996 (1)

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

1937 (1)

E. E. Jelly, “Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride,” Nature 139(3519), 631–632 (1937).
[Crossref]

1936 (1)

G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angew. Chem. 49, 563 (1936).

Akselrod, G. M.

Armitage, A.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Atay, T.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Bradley, M. S.

G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, “Lasing through a strongly-coupled mode by intra-cavity pumping,” Opt. Express 21(10), 12122–12128 (2013).
[Crossref] [PubMed]

M. S. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B 82(3), 033305 (2010).
[Crossref]

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
[Crossref]

Bulovic, V.

G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, “Lasing through a strongly-coupled mode by intra-cavity pumping,” Opt. Express 21(10), 12122–12128 (2013).
[Crossref] [PubMed]

M. S. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B 82(3), 033305 (2010).
[Crossref]

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
[Crossref]

Caironi, M.

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Chan, C.-H.

Chang, J.-F.

H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, C.-C. Lee, and J.-F. Chang, “Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities,” Opt. Express 21(18), 21365–21373 (2013).
[Crossref] [PubMed]

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Chen, Y.-T.

Cheng, C.-W.

Christogiannis, N.

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

Clark, C.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Coles, D.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Coles, D. M.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

Egelhaaf, H.-J.

J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
[Crossref]

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

Fritz, T.

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B 70(19), 195432 (2004).
[Crossref]

Fujii, M.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Gierschner, J.

J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
[Crossref]

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

Gwinner, M. C.

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Hayashi, S.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Ishigaki, Y.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Jaing, C.-C.

Jelly, E. E.

E. E. Jelly, “Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride,” Nature 139(3519), 631–632 (1937).
[Crossref]

Lagoudakis, P. G.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Lee, C.-C.

Lepnev, L. S.

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Lidzey, D. G.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Lin, C.-C.

Michetti, P.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

Mouchliadis, L.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Nitsche, R.

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B 70(19), 195432 (2004).
[Crossref]

Nurmikko, A.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Obara, Y.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

Oda, M.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

Oelkrug, D.

J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
[Crossref]

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

Perakis, I. E.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Saitoh, K.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

Sakanoue, T.

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Savvidis, P. G.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Scheblykin, I. G.

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Scheibe, G.

G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angew. Chem. 49, 563 (1936).

Silva, C.

F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Annu. Rev. Phys. Chem. 65(1), 477–500 (2014).
[Crossref] [PubMed]

Sirringhaus, H.

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Skolnick, M. S.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Sliusarenko, O. Yu.

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Somaschi, N.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

Song, J. H.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Spano, F. C.

F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Annu. Rev. Phys. Chem. 65(1), 477–500 (2014).
[Crossref] [PubMed]

F. C. Spano and H. Yamagata, “Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

Tani, T.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

Tischler, J. R.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
[Crossref]

Tompert, A.

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

Van der Auweraer, M.

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Vitukhnovsky, A. G.

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Wei, H.-S.

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Yamagata, H.

F. C. Spano and H. Yamagata, “Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

Young, E. R.

Zhang, Q.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

Adv. Funct. Mater. (1)

J.-F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, “Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography,” Adv. Funct. Mater. 20(17), 2825–2832 (2010).
[Crossref]

Adv. Mater. (1)

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
[Crossref]

Adv. Optical Mater. (1)

N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, and D. G. Lidzey, “Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED,” Adv. Optical Mater. 1(7), 503–509 (2013).
[Crossref]

Angew. Chem. (1)

G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angew. Chem. 49, 563 (1936).

Annu. Rev. Phys. Chem. (1)

F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Annu. Rev. Phys. Chem. 65(1), 477–500 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett. 99(14), 143303 (2011).
[Crossref]

J. Phys. Chem. B (2)

F. C. Spano and H. Yamagata, “Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Excitons in molecular aggregates of 3,3′-bis[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties,” J. Phys. Chem. B 105(20), 4636–4646 (2001).
[Crossref]

Nat. Mater. (1)

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Nature (2)

E. E. Jelly, “Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride,” Nature 139(3519), 631–632 (1937).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[Crossref]

Opt. Express (2)

Org. Electron. (1)

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron. 8(2-3), 94–113 (2007).
[Crossref]

Phys. Rev. B (3)

M. S. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B 82(3), 033305 (2010).
[Crossref]

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B 70(19), 195432 (2004).
[Crossref]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Phys. Rev. Lett. (2)

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Phys. Status Solidi (1)

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi 8(2c), 595–597 (2011).
[Crossref]

Synth. Met. (2)

D. Oelkrug, H.-J. Egelhaaf, J. Gierschner, and A. Tompert, “Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers,” Synth. Met. 76(1-3), 249–253 (1996).
[Crossref]

J. Gierschner, H.-J. Egelhaaf, and D. Oelkrug, “Absorption, fluorescence and light sscattering of oligothiophene and oligophenylenevinylene nanoaggregates,” Synth. Met. 84(1-3), 529–530 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 AFM images (5 μm × 5 μm) of DEDOC J-aggregate films on glass substrates, made by (a) LBL assembly (PDAC/DEDOC), and spin-coating on (b) bare glass with 10 mg/mL DEDOC solution concentration and (c) PDAC-treated glass with various concentrations.
Fig. 2
Fig. 2 (a) Absorption spectra of P(DP)4 LBL films on glass with different PDAC solution concentrations. The absorption spectra were extracted from the reflectance (R) and transmittance (T) spectra by 1-R-T. (b) (n,k) spectra of DEDOC J-aggregates in LBL films. (c) Peak absorption of LBL films versus N for different PDAC concentrations. The solid lines indicate the optimal fitting of peak absorption in comparison with the experimental data (solid circles). The inset tables summaries the fitting thicknesses of each PDAC and DEDOC layer. (d)-(f) show the similar characterizations of spin-coated DEDOC J-aggregate films on PDAC-treated and bare glass. From the peak k value in (e) we extract α~8.1 × 105 cm−1 for spin-coated films on PDAC-treated glass. The fitting thicknesses of spin-coated films (solid lines) are well matched with the AFM measurements (solid circles).
Fig. 3
Fig. 3 (a)-(c) PL images of DEDOC J-aggregate films on glass substrates performed by confocal microscope with scanning configuration. (a) P(DP)4 LBL film, (b) spin-coated film on bare glass, and (c) spin-coated film on PDAC-treated glass. Both the spin-coated films were prepared with 10 mg/mL DEDOC concentration. (d)-(f) show the large-scale PL images corresponding to (a)-(c) recorded from the same system in a single measurement. (g)-(i) PL spectra corresponding to the maximum (red) and minimum (blue) PL intensity in the images of (a)-(c).
Fig. 4
Fig. 4 (a) Device structure of an OLED with DEDOC J-aggregate films as the luminescence layer. (b) EL spectrum and image of an OLED with P(DP)4 LBL film. The peak wavelength of EL spectrum is 551 nm. The device area is 2 mm × 5 mm.
Fig. 5
Fig. 5 (a)-(c) Optoelectronic characteristics of the OLEDs with DEDOC J-aggregates, made by (a) LBL assembly for various adsorption cycles N, (b) spin-coating on PDAC-treated Poly-TPD for DEDOC concentrations of 1-10 mg/mL, and (c) spin-coating on Poly-TPD without PDAC pretreatment for DEDOC concentrations of 5-10 mg/mL. The evaluated EQEs versus driving voltage are shown in the insets. (d) Summary of the maximum EQE values extracted above 12V versus the thickness of J-aggregate films for different processes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I e 00 / I e 01 N coh / λ 2 ,

Metrics